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Abstract

To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to

form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombina-

tion. One class of products formed by recombination are crossovers, which are required for

proper chromosome segregation in the first meiotic division. The synaptonemal complex

(SC) is a protein structure that connects homologous chromosomes during meiotic pro-

phase I. The proper assembly of the SC is important for recombination, crossover formation,

and the subsequent chromosome segregation. Here we identify the components of Cullin

RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis ele-

gans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly

manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recom-

bination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the

mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. ele-

gans, SC assembly does not require recombination and there is no evidence that PC forma-

tion is regulated by recombination as well. However, in one cul-4 mutant PC formation is

dependent upon early meiotic recombination, indicating that proper assembly of the SC can

be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4

deregulation leads to transposition of the Tc3 transposable element, and defects in forma-

tion of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of

CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that

are essential for maintaining genome integrity.

Author summary

Defects in the formation of the structure named the synaptonemal complex (SC) lead to

the missegregation of chromosomes in the divisions that generate sperm and egg cells. In

humans, this chromosome missegregation is associated with infertility and developmental

disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and

aggregated SC proteins are associated with an inability to properly repair DNA damage

and accurately segregate meiotic chromosomes. How SC proteins assemble such that they
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do not form misfolded protein aggregates is poorly understood. The germlines of nema-

todes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin

ligase complex (CRL4), have defects in the formation of the SC that can be due to misfold-

ing of SC proteins and their aggregation. CRL4 appears to be involved in other germline

functions that directly affect chromosome stability (DNA damage repair and transposi-

tion), indicating that CRL4 has a central function in the formation of functional sperm

and egg cells.

Introduction

Meiosis is a specialized cellular division essential for sexually reproducing metazoans. Meiosis

proceeds by two cellular divisions: the first separates homologous chromosomes and the sec-

ond separates sister chromatids. Perturbations of meiosis can lead to missegregation of chro-

mosomes and nondisjunction resulting in aneuploidy and/or inviable offspring (reviewed in:

[1,2]). Prior to the first division, during meiotic prophase I, crossovers between homologous

chromosomes promote proper segregation in the subsequent division. In Caenorhabditis ele-
gans, homologous chromosomes pair, synapse, and proceed through meiotic recombination

(reviewed in: [3]). Synapsis in some organisms is a process that can initiate concurrently with

pairing (typically in the leptotene/zygotene stages), and involves the assembly of the tripartite

protein structure, the synaptonemal complex (SC) [2]. Assembly of the SC occurs between

homologous chromosomes; once SC is present along the entirety of the chromosome, the

chromosomes are synapsed. In sexually reproducing model organisms, DSB formation and

repair require specific components of the SC that are part of the chromosome axis (reviewed

in: [4]). SC assembly is not always dependent upon DSB formation and recombination initia-

tion; some species do not require DSB formation or recombination for synapsis (e.g. Drosoph-
ila; [5] and C. elegans; [6]). In other cases, SC assembly depends on DSB formation/

recombination (e.g. mouse; [7] and S. cerevisiae; [8]). Negative regulation of SC assembly, or

prevention of aberrant SC formation, by recombination has not yet been described.

Meiotic recombination initiates by DNA double strand break (DSB) formation. Meiotic

DSBs are typically formed by Spo11, a topoisomerase VI-like protein [9]. Upon DSB forma-

tion, nucleolytic excision of the 5’ DNA strand occurs, leaving a 3’ single strand DNA over-

hang. This overhang is subsequently bound by the RecA homolog, Rad51/Dmc1; the DNA-

protein complex invades a homologous chromosome as a template for repair. Synthesis depen-

dent repair follows ultimately resulting in the formation of non-crossovers and crossovers. On

each chromosome a crossover, together with sister chromatid cohesion, physically hold homo-

logs together. The SC then disassembles, and chromosomes await separation in metaphase I.

In aberrant conditions, DSBs can occur in the germline through other mechanisms, such as

movement of transposable elements (TEs) (e.g., [10,11]). To prevent this, the movement of

TEs is suppressed by germline-specific RNA interference mechanisms (e.g., [12–14]).

The SC in C. elegans is composed of two main components, the axial element and the cen-

tral region. The axial element is made up of four proteins: HTP-1/2, HTP-3, and HIM-3, and

assembles first along each homolog [15–18]. This allows the central region to assemble, also

made up of four proteins: SYP-1-4, which connect the two homologs, stabilizing pairing [19–

22]. Loss or disturbance of any one of these four central components inhibits the other compo-

nents’ ability to localize and assemble. Studies of the SC in C. elegans revealed its dynamic

structure: even when fully assembled SC proteins still are being exchanged [23,24]. The SC is

more dynamic in early and mid-prophase and its dynamic properties are more restricted once

crossovers are formed in late pachytene. This communication between the crossovers to the
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SC was shown to be regulated by SYP-4 phosphorylation [23]. While the processes controlling

SC dynamics may be related to SC assembly, so far recombination appears to play no role in

SC assembly; in the absence of SPO-11, or any protein involved in recombination, the SC

assembles normally as in wild type. One exception is observed in the cra-1 mutant background

in which SC assembly defects become more severe in the absence of early meiotic recombina-

tion intermediates [25]. How, and under what conditions, recombination affects SC assembly

in C. elegans, is not yet understood.

The post-translational modifier, ubiquitin, is known to play an important part in meiosis in

several organisms (reviewed in: [26,27]). Ubiquitination involves a protein cascade; the E1

enzyme activates ubiquitin so the E2 conjugation enzyme can transfer ubiquitin to the E3 ubi-

quitin ligases. E3 enzymes then attach ubiquitin to target proteins (Fig 1A). The most well-

known function of ubiquitination is targeted degradation by the proteasome. Loss of some E3

activity or inhibition of the proteasome in meiosis can lead to delayed meiotic entry (C. ele-
gans, and mice; [28,29]), improper meiotic recombination (yeast, C. elegans, and mice; [30–

32]), and perturbed assembly of SC central elements (C. elegans; [33,34]).

One of the major families of ubiquitin ligases are the Cullin Ring E3 ubiquitin ligases (CRL)

which are activated by neddylation. The activity of CRLs are controlled by deneddylation

through the CSN/Cop9 Signalosome. One particular CRL, Cullin RING E3 ubiquitin ligase 4

(CRL4), has been shown to play an important role in the processes required for proper DNA

function and maintenance (e.g. DNA repair, histone deposition, and replication (reviewed in:

[35]). CRL4 is typically composed of 4 subunits; a Cullin scaffold protein, a RING box protein

(Rbx) that binds the E2 enzyme, an adaptor protein that binds the ubiquitin-targeted substrate,

and Ddb1 which is a mediator between the cullin scaffold and the adaptor protein. While

Cul4, Ddb1, and Rbx are found in all CRL4s, the adaptor protein varies and is specific to a few

substrates (reviewed in: [36]). In C. elegans, one known role of CRL4 is in the prevention of re-

replication during S-phase in the soma [37–39], but not in the germline [40]. In meiosis, dele-

tion of Cul4A in mice leads to defects in recombination and increased apoptosis [29,41], and

in Arabidopsis Cul4 mutants affect the distribution of crossovers [42]. We previously identi-

fied CUL-4 as a member of the SC assembly pathway in C. elegans meiosis, and CRL4 is a plau-

sible target of the CSN/Cop9 signalosome [34]. In wild type C. elegans, recombination

depends on SC assembly but not vice versa [6,22]. Therefore, we suggested that the defects in

recombination identified in this mutant are due to SC assembly defects [34]. The role of other

components of CRL4 on SC assembly were unknown, nor the identity of the adaptor protein.

In this study, we determined novel roles for the CUL-4 E3 ubiquitin ligase complex in meiotic

prophase I by examining oogenesis in the model organism C. elegans.
We examined four proteins (CUL-4, DDB-1, GAD-1, and RBXs) that were part of the

CRL4 E3 ligase complex to determine if they were involved with SC assembly and/or meiotic

recombination. We show that in C. elegans, the CRL4 E3 ligase plays a role in meiotic homolo-

gous recombination. Surprisingly, SC proteins are affected by meiotic recombination in one

cul-4 mutant, as inactivation of proteins involved in meiotic recombination prevents PC for-

mation in this cul-4 mutant. CUL-4 also appears to have a role in some TE silencing leading to

another source of DNA damage. Our studies suggest that CUL-4 performs a conserved role in

meiosis in DSB repair and reveal a novel effect of recombination on SC assembly behavior.

Results

SC assembly is perturbed in CRL4 mutants

We have shown previously that the CUL-4 scaffold of the CRL4 ubiquitin ligase is required for

proper SC assembly in C. elegans [34]. The CUL-4 RING E3 Ligase (CRL4) complex is

CRL4 in recombination and the folding of synaptonemal complex proteins
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Fig 1. CUL-4 E3 ligase complex mutants exhibit PC formation in meiotic prophase I. A) A model of the CRL4 E3

ligase complex and its components examined in this study, based on what is known about its biochemical activity and

composition from studies in other systems. The complex is presented in two states: active (neddylated/upper) and

inactivated (deneddylated/lower), the active form is depicted before and after ubiquitination of the substrate. Gray

subunits represent deletion mutations that do not result in a phenotype (RBX-1/2) or show minor phenotype (CAND-

CRL4 in recombination and the folding of synaptonemal complex proteins
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composed of 4 subunits, some of which vary between organisms and processes [35]. In C. ele-
gans, the CRL4 complex is made up of four main components: CUL-4, the main scaffolding

protein for the complex, a RING box protein that interacts with the E2 conjugating enzyme for

targeted ubiquitination, DDB-1 which binds CUL-4 so that an adaptor protein can bind to the

complex, and an adaptor protein (DDB1-Cul4-associated factor, DCAF) that recognizes target

proteins for ubiquitination (Fig 1A). We aimed to identify proteins that were part of the

CRL4-mediated, SC assembly pathway by focusing on candidates that were part of the CRL4

in other cellular functions, as well as through a targeted RNAi screen (described in Materials

and Methods). CUL4, DDB1 and RBX homologs have been previously found in C. elegans.
CUL-4 and DDB-1 were shown to have a conserved role in mitotic replication and physically

interact with each other[40,43]. RBX-1 acts with other CRL complexes found in C. elegans, but

has not been shown to act within CRL4[44]. To identify the adaptor protein we performed an

RNAi screen of genes encoding for proteins containing a WD40-DDB1 domain (see below).

To examine SC assembly dynamics, immunofluorescent staining was performed on dis-

sected C. elegans germlines (Fig 1B and S1 Fig). Nuclei in the germlines are positioned in a

sequential manner allowing for a time course analysis of early meiotic events. Based on the

timing of HTP-3 and SYP-1 localization we can conclude that meiotic entry occurs in the

genotypes tested (S1K-N and [34]). To properly compare dynamics of SC assembly, length

measurements of wild type, csn-5(ok1064), and cul-4(ok1891) mutant germlines were taken.

Both cul-4(ok1891) and csn-5(ok1064) germlines were significantly shorter than wild type

germlines (cul-4(ok1891): p<0.0001, csn-5(ok1064): p = 0.0007, Mann-Whitney, Fig 1C).

These analyses were used as a basis to define the progression of meiotic prophase I, in that

each zone, or image, represents a different portion of the pachytene time-course (description

in Materials and Methods). In wild type germlines, Zones 1 and 2 correspond to the pre-mei-

otic tip (PMT) of the germline where mitotic proliferation occurs prior to meiotic entrance. In

cul-4(ok1891) and csn-5(ok1064) mutants, as well as other CRL4 mutants, Zone 1 and the ini-

tial portion (approximately 1/3) of Zone 2 represent the PMT. In wild type, Zones 3–7 progres-

sively represent meiotic prophase I. Zone 3 includes leptotene/zygotene, where SC assembly

initiates and SPO-11 dependent DNA double strand breaks (DSBs) occur; Zones 4–7 represent

pachytene, where SC assembly is completed and meiotic recombination is finished. Based on

the timing of HTP-3 and SYP-1 localization to chromosomes in cul-4(ok1891) and csn-5

1) B) Full germline images of wild type (top) and cul-4(ok1891) mutants (bottom); blue (DAPI) and red (SYP-1).

White lines are the border between the image and a black background that was added so a rectangular shape will be

created. Scale bars are 20μm. C) Graphical comparison of germline length in wild type, csn-5(ok1064), and cul-4
(ok1891) mutants (Mann-Whitney; p-values, � < 0.001). D-J) Graphical analyses of SYP-1 localization analysis (“No

SYP-1” was defined as having no SYP-1 immunofluorescence present along chromosomes (DAPI). “SYP-1 PC” were

nuclei with only PC formation present, no elongation of SYP-1 along DAPI. “SYP-1 PC and Some Linear” was the

presence of PC(s) in the nucleus but also partial elongation of SYP-1,<50% of DAPI. “SYP-1 PC and Linear” was

similar to “SYP-1 PC and Some Linear” with the exception that SYP-1 is elongated along>50% of DAPI. “SYP-1

Partial Linear” nuclei had elongated SYP-1 along up to 50% of DAPI. “SYP-1 Mostly Linear” nuclei had SYP-1 along

up to 50% of DAPI but less than 100%. “SYP-1 Linear” nuclei had fully elongated SYP-1 along all DAPI. “Other” was

defined as nuclei that had abnormal DAPI appearance.); statistical comparisons of each mutant were made against

wild type (Fischer’s exact test; p-values, � < 0.001). Scale bars are 2μm. K) Analysis of percentage of germlines with PC

formation within each individual genotype. The number of PCs per germline were grouped into three main categories:

No PCs = germlines with no SC PC formation, Few PCs = germlines no more than 5 PCs or less than ½ of a zone with

PCs, and Abundant PCs = germlines with more than 5 PCs or greater than ½ of a zone with PCs. Statistical

comparisons were made to wild type for each mutant individually (Fisher’s exact test; p-values, � < 0.0001). L) Analysis

of homologous and non-homologous pairing by FISH to the 5S locus coupled with SYP-1 immunostaining in

pachytene nuclei. In wild type the majority of nuclei are paired and synapsed (green) while in cul-4(ok1891) mutants

less nuclei are paired. Unpaired FISH foci frequently associated with SYP-1 on at least one locus (purple and red)

indicating non-homologous synapsis occurs in cul-4(ok1891) mutants regardless if the nuclei contain or do not

contain PC. cul-4(ok1891) nuclei with PCs also contain FISH singnals that do not associate with SC (black and gray).

https://doi.org/10.1371/journal.pgen.1008486.g001
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(ok1064) mutants (Fig 1D, 1E and 1H; S1K and S1L Fig), the latter portion of Zone 2 and early

Zone 3 are leptotene/zygotene, the rest of Zone 3 and Zones 4–6 are pachytene. The difference

in zones between genotypes (e.g. wild type vs. cul-4(ok1891) mutants) was due to a reduction

in the size of the mitotic proliferation zone (Fig 1D, 1E and 1H; S1K and S1L Fig and [34]) and

is consistent with the reduced gonad size (Fig 1C).

SC assembly can be observed by staining with SYP-1, a component of the central region of

the SC. In wild type, SYP-1 is absent in PMT nuclei. Upon meiotic entrance, SYP-1 begins to

assemble (in a linear pattern) along homologous chromosomes and becomes fully assembled

along homologs in early pachytene (Fig 1D; S1A Fig). In cul-4(ok1891) mutants, large poly-

complexes (PCs) are formed, which are defined as at least twice the width of typical SYP-1

structures [34] found in wild type nuclei [Fig 1D vs. 1E; S1B Fig; PCs (purple, pink and red cat-

egories) are absent in wild type but present in ~half of meiotic prophase I nuclei of cul-4
(ok1891) mutants]. These PCs may be due to SC assembly defects suggesting a role for CRL4

in SC assembly, consistent with [34]. Although PCs were abundant in cul-4(ok1891) mutants,

nuclei frequently showed linear SC even in the presence of PCs. It is possible that this SC

would not form between homologs, leading to non-homologous synapsis. Analysis of SYP-1

combined with FISH showed that most SC assembled between homologs (Fig 1L). However,

about 25% of cul-4(ok1891) mutant nuclei showed non-homologous synapsis of at least one

chromosome, regardless whether they exhibit PCs or only linear SC (Fig 1L).

Only 64% (n = 23/36) of cul-4(ok1891) mutant germlines have PCs (Fig 1K). This incom-

plete penetrance of cul-4(ok1891) is observed with a 6X outcrossed line and is independent of

the balancer used, indicating that the incomplete penetrance phenotype is specific to cul-4
(ok1891). We monitored the incomplete penetrance another way to determine if the pheno-

type could be observed in a single worm or if the phenotype differed between individuals.

Using a gfp::syp-3 construct, SC assembly was monitored in the two gonadal arms of each

worm allowing for a thorough analysis of incomplete penetrance. When gfp::syp-3 was present

in a cul-4(ok1891) mutant background, 49% of worms (n = 33, S1C Fig) had only one arm

with PCs. This supports our view that the phenotype is due to the cul-4(ok1891) allele since the

genetic background of the two arms is, of course, identical. cul-4 null mutant strains contain-

ing the gk434 or gk511 alleles or cul-4(RNAi) treatment arrest at the L2 larval stage and do not

have germlines that can be scored ([38]and this study). In agreement, gk434 and gk511 alleles

are expected to lead to larger deletion of the protein compared to ok1891. RT-PCR of cul-4
(ok1891) revealed that this mutant has an out-of-frame deletion with a premature stop codon

in the cul-4 transcript. cul-4(ok1891) is expected to encode for a C’ truncated protein that does

not contain both the RBX/ROC binding site and the neddylation site of CUL-4. Thus, cul-4
(ok1891) likely exhibits partial penetrance as it is not a full loss-of-function allele.

The CRL4 complex involved in prevention of re-replication is composed of RBX-1 [45] and

DDB-1 [40], which are also predicted to be obligatory CRL4 subunits in other species [35]. We

hypothesized that if RBX-1 and DDB-1 interact with CUL-4, in meiosis, then ddb-1(tm1769)
and rbx-1(ok782) mutants should exhibit a phenotype similar to that of cul-4(ok1891). As

expected, ddb-1(tm1769) and cul-4(ok1891) mutant germlines had PC formation with similar

distributions throughout the germline (Fig 1F; S1D Fig). Unlike cul-4(ok1891) mutants, ddb-1
(tm1769) showed 100% penetrance, meaning all germlines analyzed had PCs (Fig 1K). Com-

plete penetrance is consistent with these alleles behaving as null, as predicted from the size and

positions of the deletions in these alleles.

Next, we examined the phenotype of mutations in the two rbx genes of C. elegans. rbx-1
(ok782) is a deletion of the entire gene, while rbx-2(ok1617) removes the last 48% of the coding

sequence. Interestingly, neither rbx-1(ok782) nor rbx-2(ok1617) mutants had defects in SC

assembly (S1E & S1F Fig). To test for a possible redundant function, rbx-1(ok782);rbx-2

CRL4 in recombination and the folding of synaptonemal complex proteins
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(ok1617) double mutants were created; these mutants also showed no sign of PC formation

(Fig 1G; S1G Fig). This suggests that a RING box protein may not be required for SC assembly

or that a non-canonical RING protein is involved in this function (Fig 1A and Discussion).

These data collectively show that the CRL4 (CUL4 and DDB-1), as well as its regulation (CSN-

5: Fig 1H; S1H Fig; [34]) are important for proper SC assembly, independent of RBX-1/2.

To identify the adaptor component of the CRL4 that is involved in SC assembly, we con-

ducted a targeted screen using candidate genes that encode for proteins with WD40-DDB1

interaction domains (see Materials and Methods). This screen led to the isolation of gad-1 as a

candidate gene. The gad-1(ok573) mutant exhibited PC formation, similar to ddb-1(tm1769)
(Fig 1I; S1I Fig). Like ddb-1(tm1769) mutants, gad-1(ok573) showed 100% penetrance, all

germlines analyzed had PCs (Fig 1K). We therefore propose that the CRL4 complex that is

required for proper SC assembly includes DDB-1 and GAD-1 but not RBX-1 or RBX-2.

We have previously shown that csn-5(ok1064) mutants exhibited PC formation throughout

meiotic prophase I [34]. This suggests that overactive (neddylated) CRL4s that cannot be recy-

cled lead to PC formation (Fig 1H; S1H Fig). CAND-1 is a known regulator of cullin neddyla-

tion through its ability to prevent Cullin-RING E3 ligase neddylation [46]. However, unlike

other proteins in this pathway, cand-1 is not an essential gene (cand-1(tm1683) homozygote

mutants are viable [46]). CAND-1 is proposed to sequester inactive CRL4 following its dened-

dylation, prolonging its time in the deactivated form. If the balance between neddylated and

deneddylated forms is important for proper CRL4 activity in SC assembly, then inactivation of

cand-1 should result in defects in SC assembly. We observed that cand-1(tm1683) mutants had

a small percentage of nuclei with PCs, observed only in Zones 2 and 3 (Fig 1J and 1K; S1J Fig).

This indicates that the sequestering of inactive CRL4s is not important for SC assembly as

there are very few PCs formed in cand-1(tm1683) mutants.

To determine where the CRL4 complex is localized, we tagged three of the CRL4 complex

proteins by CRISPR/Cas9 insertion of sequence tags encoding for OLLAS and FLAG. CUL-4,

GAD-1, and DDB-1 were all enriched in germline nuclei, consistent with their proposed mei-

otic function (S2 Fig).

Depletion of CUL-4 levels induces PC formation

The cul-4(ok1891) mutant is not a null allele as these worms are able to develop to adulthood,

whereas successful RNAi of cul-4 and other mutants of the gene (null alleles) result in larval

lethality. Thus, the cul-4(ok1891) mutant phenotype can be attributed either to a reduction in

CUL-4 protein levels or to the formation of a truncated CUL-4 protein. To test if cul-4
(ok1891) mutants have reduced levels of CUL-4 protein, we introduced a FLAG tag to the cul-
4(ok1891) mutants and quantified the nuclear localization of CUL-4 by FLAG staining inten-

sity (Fig 2A; S2C Fig). As expected, CUL-4 was present in cul-4(ok1891) mutants but at

reduced levels in late pachytene nuclei (~15% of wild type) indicating reduced CRL4 levels.

Interestingly, the variation in nuclear localization of CUL-4 in cul-4(ok1891) mutants was high

and 25% of nuclei had no detectable levels of FLAG::CUL-4 similar to wild type (no FLAG::

CUL-4). This variability of CRL4 nuclear localization could explain the incomplete penetrance

of PC formation in the cul-4(ok1891) mutants at 20˚C (Fig 1K). However, these data do not

exclude the possibility that the phenotype observed in cul-4(ok1891) mutants may be attrib-

uted to the formation of aberrant CRL4 complexes in these mutants (see below).

If the phenotype of cul-4(ok1891) mutants is caused by a reduction of CUL-4 levels, PC for-

mation may be induced by reduction of CUL-4 levels through a different experimental

approach. To do so, we mutated cul-4 such that expression of cul-4 was in the PMT (mitotically

dividing nuclei) but not pachytene (meiotic nuclei). Expression of genes in the germline are

CRL4 in recombination and the folding of synaptonemal complex proteins
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Fig 2. PCs are formed in CRL mutants due to protein misfolding. A) FLAG::CUL-4 localization was quantified in LP nuclei in wild

type nuclei, and CUL-4 tagged lines: flag::cul-4, flag::cul-4(ok1891), and flag::cul-4::pole-1 3’UTR. Cytoplasmic background was

subtracted from wild type staining (no FLAG), leading to negative average values for the untagged wild type strain, while all other
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regulated post-transcriptionally by proteins and small RNAs that bind the 3’UTR of mRNAs

[47]. We took advantage of this system of regulation through CRISPR/Cas9 replacement of the

3’UTR of the endogenous cul-4 gene with that of the 3’UTR of the polymerase epsilon gene, a

replicative polymerase. This mutant should then have CUL-4 expression in the embryo, during

development, and in the mitotic germline, but not in the meiotic germline. Any meiotic CUL-4

proteins present in these nuclei should be protein carried over from mitosis. We also FLAG

tagged this mutant protein and observed that CUL-4 levels in the germline are reduced to ~70%

of that in the wild type flag::cul-4 strain, in both mitotic and meiotic nuclei (Fig 2A; S2C Fig).

The fact that FLAG::CUL-4 is observed in late pachytene nuclei of cul-4::pole-1 3’UTR mutants

(S2C Fig) indicates that most of the CUL-4 protein that is made in mitotic cells is not degraded

upon entrance of, or in, meiotic prophase I.

Since cul-4::pole-13’UTR mutants had reduced levels of nuclear FLAG::CUL-4, we per-

formed SYP-1 staining to test for the formation of PCs in these mutants. Unlike cul-4(ok1891)
mutants, CRL4 that is formed in this mutant is expected to be wild type in nature (intact CUL-

4 and interacts properly with other CRL4 components). cul-4::pole-13’UTR mutants did not

show any PC formation at 20˚C, but when worms were shifted to higher temperatures, PCs

were observed (Fig 2B and 2C). As little as a 2˚C temperature shift (22˚C) for 24 hours could

induce PC formation. Increased shifts in temperature and length of temperature exposure cor-

responded to an increase in number of germlines that exhibited PC formation. No PCs were

observed in wild type gonads under any of the temperature shifted conditions tested. As the

cul-4(ok1891) allele has been described before [32], we continued our studies with the ok1891
allele as opposed to cul-4::pole-13’UTR mutants.

Based on fluorescence analysis, the level of CUL-4 protein in the cul-4(ok1891) mutants was

lower than that in cul-4::pole-13’UTR mutants, which may explain why cul-4::pole-13’UTR
mutants exhibited a phenotype at 25˚C but not at 20˚C. We would therefore expect that the pene-

trance of cul-4(ok1891) mutant phenotypes will be enhanced at 25˚C and suppressed at 15˚C.

Indeed, cul-4(ok1891) mutants were almost completely penetrant for PC formation at 25˚C and

show lower penetrance at 15˚C compared to 20˚C (Fig 2D). If cul-4(ok1891) mutants exhibited

defects in SC assembly due to a gain-of-function activity, we expected the CUL-4 protein gener-

ated in this mutant to be dominant. However, cul-4(ok1891) mutant heterozygotes [cul-4
(ok1891)/+] show very limited PC formation that is only significant at 25˚C (Fig 2D). Since cul-4
(ok1891)/+ likely produce less CUL-4 protein product than +/+ (wild type), the appearance of

PCs at 25˚C can be attributed to the reduction in protein levels. These data indicate that PCs can

be formed due to a reduction in CUL-4 protein levels, and not only through perturbations of

CUL-4 protein function such as the gain of function activity of the cul-4(ok1891) allele.

genotypes had positive average values, indicating nuclear staining. Intensity is in arbitrary units. B) cul-4 mutant with 3’UTR

replacement shows temperature dependent PC formation. Categorization of germlines indicated below the graph. The categories are

presented next to the graph (Abundant PC in red, Few PC in purple, No PC in black). Temperatures are presented on the X axis. For

example, “20C to 25C(12h)” means: worms were grown from egg at 20C, and shifted at the last 12 hours before analysis to 25C. All

worms analyzed as 1 day old adults. C) Whole germline analysis of SC morphology in cul-4 mutants with 3’UTR replacement grown

at 25C from the L1 stage. Wild-type worms were grown under the same conditions and exhibit no PC formation. Categories on the

right. D) CRL4 mutant with 3’UTR replacement shows temperature dependent PC formation. Categorization of germlines indicated

below the graph. E) Representative images of untreated and 1,6-Hexanediol treated germlines in wild type, htp-3(tm3655), csn-5
(ok1064), and cul-4(ok1891) strains. Blue (DAPI), green (HTP-3), and red (SYP-1). Images were taken from mid-pachytene (Zone 4/

5). Scale bars are 2μm. F) Results of 1,6-Hexanediol treated germlines. Categorization of SYP-1 immunofluorescent staining after

1,6-Hexanediol treatment are defined as follows: “No SYP-1 (dispersed)” represents germlines where nuclei no longer have SYP-1

localization to chromosomes, “PCs” represents germlines where nuclei have PCs localized to chromosomes (for non-treated these also

contain linear SC alongside PCs, and treated did not contain linear SC), and “Linear SYP-1” represents germlines where nuclei have

linearized SYP-1 localized to chromosomes. All germlines had linear HTP-3 staining. Statistical comparisons were performed versus

wild type worms (Fisher’s exact test dispersed or with SYP-1 vs. PC; p-values, ��� p< 0.0001, �� 0.01> p> 0.001).

https://doi.org/10.1371/journal.pgen.1008486.g002
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The correlation between temperature and PC formation may be specific to the perturbation

of CUL-4 activity, and not the CRL4 complex. To examine if other CRL4 mutants exhibit tem-

perature-dependent PC formation as well, we have grown ddb-1(tm1769) and gad-1(ok573)
mutants at 15˚C. These two mutants were completely penetrant at 20˚C, but had decreased

penetrance of PC formation when grown at 15˚C from L4 to the adult developmental stage.

These data altogether indicate that perturbation of CRL4 activity correlates with defects in PC

formation in a temperature-dependent manner.

PC formation in CRL mutants are resistant to 1,6-Hexanediol treatment

PCs can be categorized into two main forms: dissolvable PCs that contain organized SC-like

structures with liquid crystal properties and indissoluble PCs that have lost their liquid-like

properties (Rog et al, 2017). The fact that the penetrance of PC formation phenotype is

enhanced by increased temperature suggests that the PCs found in CRL4 mutants may be due

to SYP protein misfolding, which would lead to loss of the liquid-like properties of the PCs in

these mutants. There is evidence that misfolded PCs cannot be disassembled with 1,6-Hexane-

diol, while properly assembled SC can [48]. When treated with 1,6-Hexanediol, normal SC

found in wild type germlines become mostly dispersed, no longer forming linear structures

along chromosomes (82% of germlines; Fig 2E & 2F). HTP-3 is a component of the SC axial

element; htp-3(tm3655) mutants and loss of this protein in meiotic prophase causes the forma-

tion of PCs that are known to maintain liquid-like properties (similar to linear SC). In htp-3
(tm3655) mutants, nuclei also had mostly dispersed localization of SYP-1 (76% of germlines;

Fig 2E & 2E; [48]). In both csn-5(ok1064) and cul-4(ok1891) mutants, PCs remained largely

intact; only 8% and 15% of germlines had disassembled PCs, respectively (Fig 2E & 2F). Similar

resistance to 1,6-Hexanediol treatment was observed in ddb-1(tm1769) and gad-1(ok573)
mutants (Fig 2F) (Fig 2F). This indicates that SC assembly is perturbed in CRL4 mutants in a

way that prevents dissolution of PCs, likely due to the loss of the liquid crystal properties in

these PCs.

Central region SC proteins are likely not targeted for ubiquitination by the

CRL4 complex

PC formation in CRL4 pathway mutants affects all central region proteins of the SC (SYP-1/2/

3/4), whereas it appears to have no effect on the axis (HTP-3). One possible explanation for PC

formation in CRL4 pathway mutants is that ubiquitination of any or all SC central region com-

ponents is different compared to wild type. In this model, the CRL4 E3 ligase complex would

target one or more of the SYPs for ubiquitination. To examine this, we performed western blot

analysis of central region SC components in wild type compared to csn-5(ok1064) and cul-4
(ok1891) mutants. Ubiquitination is expected to add ~9kDa to the final protein product (or

more for poly-ubiquitination). If one of the SYP proteins was ubiquitinated it should show a

lower mobility shift in cul-4(ok1891) mutants (which lack CRL4-mediated ubiquitination) as

well as a change of protein size in csn-5(ok1064) mutants (depending on whether these

mutants contain hyper active or destabilized CRL4). To test this, we epitope tagged all four

SYPs using CRISPR/Cas9 (see Materials and Methods). The observed SYP-2 molecular weight

from western blot analysis was as expected (~24 kDa), while all other SYPs run at a higher

molecular weight than expected (expected: 57, 26, and 67kDa, observed: ~75, ~30, and

~80kDa for SYP-1, SYP-3 and SYP-4 respectively), which may be evidence of post-transla-

tional modifications. However, examination of SYP-1 and tagged versions of SYP-2, SYP-3,

and SYP-4 in both wild type and, csn-5(ok1064) and cul-4(ok1891) mutants showed no evi-

dence for ubiquitination of any SYP protein, as the molecular weight did not change between
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mutants and wild-type (V5 antibody: SYP-2::V5 and V5::SYP-4, and FLAG antibody: SYP-1::

FLAG and SYP-3::FLAG; S3 Fig). SYP proteins that are modified by ubiquitination may be

subjected to rapid degradation. In this case, ubiquitination by CRL4 may not be detected by a

standard western blot. Exposure of worms to MG132, a proteasome inhibitor, should lead to

accumulation of rapidly degrading forms of SYP proteins, if they are present. However, we did

not observe any change in mobility of SYP proteins under these conditions and the bands cor-

responding to tagged proteins showed similar mobility between wild type and cul-4(ok1891)
mutants. In most cases, SYP levels did go down in the cul-4 mutant, but this can be attributed

to the reduction in germline size. These data altogether suggest that the effect on PC formation

is likely not due to ubiquitination of the four known SYP SC proteins by the CUL-4 E3 ligase.

CRL4 mutants show reduced pairing of homologous chromosomes

SC defects and PC formation often accompany a defect in homolog pairing [18,49,50] or PC

formation may be due to an effect on SC assembly downstream from initiation of pairing

interactions (e.g. [25,34]). To determine if homologous chromosome pairing is perturbed in

CRL4 mutants, HIM-8 immunofluorescent analysis and fluorescent in situ hybridization

(FISH) were utilized (Fig 3). HIM-8 is a pairing center protein that localizes to the X-chromo-

some pairing center (a small repeat sequence near the telomere) [51]. It is required for X chro-

mosome associations with the nuclear envelope that are important for timely and proper

pairing of the X chromosome. In wild type, approximately 53% of nuclei have paired X-chro-

mosomes upon entrance into meiosis (Zone 3), and by pachytene (Zones 4–5) over 90% of

nuclei have paired X homologs (Fig 3A & 3B). cul-4(ok1891) and ddb-1(tm1769), follow a simi-

lar pattern with approximately 50% paired X-chromosomes in Zone 2, but only reach approxi-

mately 70% of paired X-chromosomes in nuclei by pachytene (Zone 3; Fig 3A & 3B). This is

similar to what was previously shown for csn-5(ok1064) mutants ([34] and this study). To

examine whether autosomal pairing is affected, FISH was performed at the 5S RNA locus on

chromosome V. In wild type, approximately 80% of nuclei had paired 5S loci (Zone 3, Fig 3C

& 3D). In cul-4(ok1891) and ddb-1(tm1769) mutants, there was a delay in 5S loci pairing (53%

and 49%, respectively) at the onset of meiosis (Zone 2) but reached higher levels of pairing,

80–90%, in pachytene (Zone 5; Fig 3C & 3D). This was also similar to what was previously

shown for csn-5(ok1064) mutants ([34] and this study). Overall, the CRL4/CSN-Cop9 pathway

mutations affect pairing, however the severity of pairing defects observed were milder com-

pared to mutants involved in establishment of pairing (e.g. [21]).

In C. elegans, chromosomes are attached to the nuclear envelope by SUN/KASH domain

proteins that associate with cytoplasmic Dynein, forming patches [49,52]. This leads to microtu-

bule dependent chromosome movement at meiotic entry that is required for chromosome pair-

ing and homologous synapsis. Mutants that abrogate this movement also lead to formation of

PCs and delayed pairing. To test if the defects in pairing in CRL4 mutants stem from an inability

to establish pairing interactions we assayed for formation of SUN-1 patches and chromosome

movement. SUN-1 forms patches in early prophase nuclei in all genotypes tested, indicative of

proficient clustering of pairing center proteins (S4 Fig,[52]). In agreement with lack of defects in

SUN-1 patch formation, we observed no defects in chromosome movement (S4 Fig). This sug-

gests that the impaired pairing outcome is due to an inability to stabilize pairing interactions

and not due to defects in chromosome movement important for homolog pairing.

Meiotic recombination is affected in CRL4 mutants

Meiotic recombination in C. elegans requires the formation of functional SC. Previous studies

have shown that PC formation involving proteins of the central region of the SC correlated
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with the accumulation of recombination intermediates in chromosomes, despite assembling

intact lateral elements (e.g. [22]). These breaks are eventually repaired as sister chromatids

become accessible for repair in late pachytene [53]. Single strand recombination intermediates

can be visualized by antibody staining for RAD-51, which forms foci in meiotic nuclei starting

in Zones 3–4 (Fig 4A). As has been shown previously, csn-5(ok1064) mutants have increased

numbers of RAD-51 foci as nuclei progress through pachytene compared to wild type levels

(Fig 4B, [34]). Similar to csn-5(ok1064) mutants, the CRL4 mutants ddb-1(tm1769) and gad-1
(ok573) (Fig 4C; S5A Fig) showed an increase in RAD-51 foci in the germline. Interestingly,

rbx-1(ok782);rbx-2(ok1617) mutants exhibited no observable defects in SC assembly (Fig 1G,

S1G Fig), but had an increase in the amount of RAD-51 foci (Fig 4D). This effect is largely due

to rbx-1 since rbx-1 (but not rbx-2) single mutants showed an increase in the amount of RAD-

51 foci (S5C and S5D Fig). These results suggest that regulation of SC assembly may not be the

sole function of the CRL4 complex and suggests that it is also involved in meiotic recombina-

tion. cand-1(tm1683) mutants did not show an increase in RAD-51 foci numbers compared to

wild type (S5D Fig).

When RAD-51 foci numbers were analyzed, we found that the distribution of RAD-51 foci

in cul-4(ok1891) mutants was unlike what was found in csn-5(ok1064), gad-1(ok573), or ddb-1
(tm1769) mutants. We observed variation in the number of RAD-51 foci in Zones 4–6 where

Fig 3. Homologous chromosome pairing levels are decreased in CRL4 E3 Ligase mutants. A) Representative images of HIM-8 (X chromosome pairing

center protein) immunofluorescent antibody staining in wild type, csn-5(ok1064), cul-4(ok1891), and ddb-1(tm1769) strains. Images are taken from transition

zone (TZ, Zone 2/3) and late pachytene (LP, Zone 6/7). Blue (DAPI) and green (HIM-8). B) Analysis of pairing progression in meiotic germlines. HIM-8 foci

were defined as being paired if� 0.7μm apart. Statistical analyses were performed in comparison to wild type worms (Fisher’s exact test; p-values, � < 0.005).

C) Representative images of FISH (5S rDNA loci) in wild type, csn-5(ok1064), cul-4(ok1891), and ddb-1(tm1769) strains. Blue (DAPI) and green (5S rDNA). D)

Analysis of 5S rDNA loci pairing progression per nucleus in the meiotic germline. 5S rDNA foci were defined as being paired if� 0.7μm apart. Statistical

comparisons were performed in comparison to wild type worms (Fisher’s exact test; p-values, � < 0.05). Scale bars are 2μm.

https://doi.org/10.1371/journal.pgen.1008486.g003
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about 30% of the nuclei had no RAD-51 foci in cul-4(ok1891) mutants (Fig 4E). One explana-

tion for this observation is that cul-4(ok1891) mutants have defects not only in DSB repair but

also in DSB formation. A small fraction of cul-4(ok1891) mutant nuclei showed an increase in

RAD-51 foci numbers, but not to the same extent found in gad-1(ok573), ddb-1(tm1769), or

csn-5(ok1064) mutants. There is a correlation between the severity of the aggregation defects

and the number of RAD-51 foci per nucleus in cul-4(ok1891) mutants; nuclei with PCs had

more RAD-51 foci than nuclei with normal, linear SC (Fig 4G). Thus, it is possible that the

Fig 4. CRL4 complex mutants have increased numbers of meiotic recombination intermediates. A-F) Representative images of RAD-51 (green)

immunofluorescent staining and DNA/DAPI (blue) from zone 5, left. Quantification of RAD-51 foci per nucleus throughout the germline in each genotype

was designated into zones (discussed in Materials and Methods), right. Statistical comparisons were performed with wild type worms versus each individual

CRL4 E3 ligase complex mutant (Mann-Whitney; p-values, � < 0.05). G) Number of RAD-51 foci in nuclei categorized based on SC assembly defects in cul-4
(ok1891). H) Irregular RAD-51 foci analyses, irregular foci are defined as long filamentous tracts or globular structures. Statistical comparisons were performed

with wild type worms against individual mutants (Fisher’s exact test; p-values � <0.05). I) RAD-51 immunofluorescent intensity of foci: signal intensity of a

nucleus was normalized to cytoplasmic RAD-51 immunofluorescence and divided by the number of RAD-51 foci quantified per nucleus. Each data point is

one nucleus. For cul-4 mutants, only nuclei with foci were analyzed (about half of the nuclei did not have any foci). Statistical comparisons were performed

with wild type worms and individual mutants (Mann-Whitney; p-values, � <0.0005). Scale bars are 2μm.

https://doi.org/10.1371/journal.pgen.1008486.g004
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defects in SC formation are responsible, in part, to the accumulation of RAD-51 foci in cul-4
(ok1891) mutants, and this may be the same as in the other CRL4 mutants.

Along with the variation in the number of RAD-51 foci, there was an increase in irregular

focus appearance in cul-4(ok1891) mutants (examples in Fig 4E & 4F). These irregular foci

appeared as large lobed foci or string-like structures and were found in cul-4(ok1891), ddb-1
(tm1769), and csn-5(ok1064) mutants (Fig 4H). These irregular foci were found throughout

the germline, but their numbers increased as meiosis progressed. It is possible that irregular

foci were a combined fluorescence of adjacent foci, which would be more common in mutants

with high RAD-51 levels. If so, rad-54 mutants, which are defective in RAD-51 unloading and

exhibit elevated numbers of RAD-51 foci, should also have increased irregular foci. However,

rad-54 mutants have fewer irregular foci compared to cul-4(ok1891) mutants (Fig 4H), indicat-

ing that these foci are a product of improper meiotic recombination and its progression.

Another possibility for the formation of irregular RAD-51 foci is an increase in nuclear RAD-

51 protein. To examine this, fluorescence intensity of RAD-51 in nuclei was measured in cul-4
(ok1891) and csn-5(ok1064) mutants in comparison to wild type nuclei. In cul-4(ok1891)
mutants, intensity of RAD-51 fluorescence per nucleus was similar to that of wild type. In csn-
5(ok1064) mutants, there was a significantly lower intensity of RAD-51 fluorescence per

nucleus compared to wild type (Fig 4I). Thus, CUL-4 likely has a role in regulation of RAD-51,

but not through RAD-51 degradation. Unlike the defects in SC assembly, which was found

only in ~2/3 of the germlines analyzed, the aberrant accumulation of RAD-51 foci was found

in all germlines examined (n = 39).

CUL-4 promotes meiotic recombination and represses SPO-11

independent DSB formation

Because of the wide range of RAD-51 foci numbers in cul-4(ok1891) mutants, we tested whether

nuclei with no RAD-51 foci may lack the ability to form SPO-11 generated DSBs. DSB formation

and repair is a dynamic process, therefore the steady state number of RAD-51 foci in a given zone

is an underestimation of the overall numbers of breaks generated. RAD-54 is required for DSB

repair after the RAD-51 coated ssDNA invades the homologous sequence [54]. In the absence of

RAD-54, RAD-51 filaments are not processed and the overall number of DSBs can be estimated

from the number of RAD-51 foci. rad-54(ok615) mutants exhibit 24X increased levels of RAD-51

foci compared to wild type (Zone 7, Fig 5C). Interestingly, cul-4(ok1891);rad-54(ok615) double

mutants had significantly lower numbers of RAD-51 foci in Zones 5 and 6 compared to rad-54
(ok615) single mutants (Zone 5: 0.5X; Zone 6: 0.27X; Fig 5C & 5D). Approximately 13% of nuclei

in Zone 5 of cul-4(ok1891);rad-54(ok615) double mutants had no observable RAD-51. On the

other hand, rad-54(ok615) single mutants had no nuclei without RAD-51 foci supporting the idea

that cul-4(ok1891) mutants have reduced numbers of DSBs (Fig 5B–5D).

To further support our hypothesis that some nuclei in cul-4(ok1891) mutants lack DSB for-

mation, we examined cul-4(ok1891);msh-5(me23) double mutants. MSH-5 is important for

crossover designation during recombination [53]. msh-5(me23) mutants have increased RAD-

51 foci, but not to the extent of rad-54(ok615) mutants (Zone 6: ~47% msh-5(me23)� 13 foci

per nucleus, ~71% rad-54(ok615)� 13 foci per nucleus; Fig 5C & 5E). The difference in phe-

notypes is due to the fact that DSBs can be repaired in msh-5 mutants at late pachytene by

homologous recombination producing noncrossovers ([53]; Fig 5E). In the double mutants,

there was a population of nuclei that did not have RAD-51 foci and were similar to the cul-4
(ok1891);rad-54(ok615) double mutants (Zone 5: cul-4(ok1891);msh-5(me23) = ~16% of

nuclei; Fig 5D & 5F). These data suggest a role for CUL-4 in formation of SPO-11 induced

DSBs.
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Next, we tested if the DSBs formed in cul-4(ok1891) mutants leading to RAD-51 foci are

dependent on SPO-11. In wild type cells, SPO-11 activity accounts for almost all germline

DSBs and RAD-51 foci (Fig 4G). If DSBs in cul-4(ok1891) mutants were generated solely by

SPO-11, then deletion of spo-11 in cul-4(ok1891) mutants would eliminate the presence of

RAD-51 foci. This was not the case, as throughout pachytene (Zones 3–6) approximately 40–

50% of nuclei had RAD-51 foci (Fig 5H). The overall numbers of RAD-51 foci were reduced

compared to cul-4(ok1891) mutants (Zone 6: cul-4(ok1891)- 5.2 foci/nucleus; cul-4(ok1891);
spo-11(ok79)- 2.98 foci/nucleus; Fig 5B & 5H), but higher than observed in spo-11(ok79)

Fig 5. cul-4(ok1891) mutants have nuclei with decreased numbers of RAD-51 foci. A-H) Meiotic recombination intermediate (RAD-51) analyses in early meiotic

recombination mutants in the cul-4(ok1891) mutant background. Representative images (left) are from Zone 5 (MP). Statistical comparisons were performed with double

mutants versus single mutants (right; Fisher’s exact test; p-values, � <0.005). Scale bars are 2μm.

https://doi.org/10.1371/journal.pgen.1008486.g005
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mutants (Zone 6: 0.1 foci/nucleus; Fig 5G). To ensure that the immunofluorescent RAD-51 foci

we observed were due to recognition of the RAD-51 protein, we analyzed RAD-51 focus forma-

tion in the cul-4(ok1891);rad-51(ok2218) double mutants. As expected, no RAD-51 foci were

observed in cul-4(ok1891);rad-51(ok2218) double mutants using the same methods (S5E & S5F

Fig). We propose that cul-4(ok1891) mutants have a SPO-11 independent source of DSBs.

One possible explanation for the source of SPO-11-independent DNA damage is the move-

ment of transposable elements. C. elegans transposable element movement is inhibited by the

RNA interference pathway and by a set of mutator genes [12,55,56]. Approximately 12% of the

C. elegans genome is made up of transposable elements (TEs), but only 6 TEs are found to be

active, all of which are part of the Tc1/Mariner DNA TE class (reviewed in: [57]). Expression

levels of two TEs, Tc1 and Tc3, were examined by qRT-PCR. In wild type, Tc1 had low levels to

no levels of detectable expression. Tc1 activity is known to be specific to somatic tissue [58], and

therefore our results are likely basal expression readouts of somatic tissue transposition. In cul-4
(ok1891) mutants, Tc1 had no detectable expression, but Tc3 had an average of 2.5-fold

increased expression level compared to wild type (S5G Fig). Thus, in cul-4(ok1891) mutants,

certain TE transposases are more highly expressed which could lead to increased mobility. An

increase in Tc3 transposition may be the SPO-11-independent source of DNA damage leading

to the observed RAD-51 foci in the cul-4(ok1891);spo-11(ok79) double mutants. To test if loss of

the CRL4 complex and not just perturbation of CUL-4 leads to increased expression of the Tc3
transposase, we performed qRT-PCR of Tc3 in ddb-1(tm1769) mutants. We observed a similar

increase in Tc3 expression in ddb-1(tm1769) compared to cul-4(ok1891) (S5G Fig), suggesting

that perturbation of CRL4, and not just CUL-4, may lead to increased transposition.

The CRL4 pathway is required for wild-type numbers of crossovers in

meiosis

We have previously shown that the CSN/Cop9 signalosome is required for crossover forma-

tion [34]. Crossovers are divided into two subgroups: interfering (non-randomly spaced) and

non-interfering crossovers (randomly spaced). In the C. elegans wild type germline all cross-

overs are interfering and are marked by COSA-1, forming one focus per chromosome [59]. To

determine if CRL4 components are also required for crossovers, CRL4 mutants were crossed

into a gfp::cosa-1 transgenic background. Mutants of the CRL4 complex (that also exhibit PC

formation), on average, had lower levels of GFP::COSA-1 foci as compared to wild type (~61–

77% to that of wild type; Fig 6A & 6B). There was also a small population of nuclei with

increased levels of GFP::COSA-1 in CRL4 mutants (up to 20%; Fig 6B). This could be due to

incomplete stabilization of crossover sites with COSA-1 localizing to multiple sites, indicative

of meiotic recombination delay. In meiotic prophase I, progression of nuclei past pachytene

are defined as part of the diplotene/diakinesis stage. CRL4 mutants, and csn-5(ok1064)
mutants, do not progress to this stage; instead meiotic progression halts at late pachytene

(Zone 6). This is true for all CRL4 mutants except for rbx-1 mutants. rbx-1 mutants have nuclei

which progress into the final stage of diakinesis called D-1. Nuclei at this stage have 6 DAPI

bodies representing the six bivalents (Fig 6C & 6D). rbx-1 mutants had an average of 6.8 DAPI

bodies indicating that chiasma in some nuclei had not occurred or had been lost (Fig 6C &

6D), suggesting a minor role for RBX-1 in crossover formation.

PC formation in cul-4(ok1891) mutants is dependent on SPO-11 generated

DSBs

It has been proposed that SC assembly is unaffected by the presence or progression of recom-

bination in C. elegans. For example, SC assembles in spo-11 mutants as proficiently as in wild
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type ([6]; Fig 7C). Surprisingly, in cul-4(ok1891);spo-11(ok79) double mutants, PC formation

was almost completely eliminated (Fig 7D). Formation of SC between chromosomes does not

necessarily mean that homologous chromosomes are synapsed, as SC can form aberrantly

between non-homologous chromosomes in some mutants [17]). To determine if spo-11(ok79)
suppressed the cul-4(ok1891) mutants truly, restoring homologous synapsis, we performed

Fig 6. CUL-4 E3 ligase complex mutants likely affect the levels of crossovers. A) Representative late pachytene images of GFP::COSA-1 in CRL4 E3 ligase

complex mutants. Blue (DAPI) and green (COSA-1::GFP) B) Quantification of GFP::COSA-1 per nucleus of each different genotype, images analyzed were

from Zone 6/7 (dependent upon the length of germline). Statistical analyses were performed in comparison to wild type worms (Mann-Whitney; p-values, � <

0.0005). C) Representative images of diakinesis-1 nuclei in wild type (6 DAPI bodies) and rbx-1(ok782) mutants (12 DAPI bodies), blue (DAPI). D)

Quantification of the number of DAPI bodies at D-1 in each different genotype. NA = Not Applicable due to these mutants not progressing past pachytene.

Statistical analyses were performed in comparison to wild type worms (Mann-Whitney; p-values, � < 0.001). Scale bars are 2μm.

https://doi.org/10.1371/journal.pgen.1008486.g006

CRL4 in recombination and the folding of synaptonemal complex proteins

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008486 November 18, 2019 17 / 38

https://doi.org/10.1371/journal.pgen.1008486.g006
https://doi.org/10.1371/journal.pgen.1008486


Fig 7. PC formation in cul-4(ok1891) mutants is dependent upon the presence of early meiotic recombination

proteins. A-J) SYP-1 analysis of SC assembly in meiotic recombination mutants in a cul-4(ok1891) mutant

background (“No SYP-1” was defined as having no SYP-1 immunofluorescence present along chromosomes (DAPI).

“SYP-1 PC” were nuclei with only PC formation present, no elongation of SYP-1 along DAPI. “SYP-1 PC and Some

Linear” was the presence of PC(s) in the nucleus but also partial elongation of SYP-1,<50% of DAPI. “SYP-1 PC and
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SYP-1 staining combined with FISH (5S locus). We observed that 94.5% of pachytene nuclei

in cul-4(ok1891);spo-11(ok79) double mutants (n = 290) contained 5S paired foci flanking

SYP-1 linear stretches, indicative of homologous synapsis. This frequency was slightly lower

than what was found in wild type (98.7% n = 371, p = 0.003 Fisher’s Exact Test). This indicates

that the majority of chromosomes in pachytene nuclei of cul-4(ok1891);spo-11(ok79) double

mutants were homologously-synapsed. It is possible that DSB processing/repair defects and

not only DSB formation are required for PC formation in the cul-4(ok1891) mutants. To test

this, we examined rad-54(ok615) mutants in the cul-4(ok1891) mutant background. Similar to

cul-4(ok1891);spo-11(ok79) double mutants, there was a significant decrease in the amount of

PC formation in cul-4(ok1891);rad-54(ok615) mutants (Fig 7F).

To determine the point at which meiotic recombination no longer affects PC formation, we

assessed cul-4(ok1891);msh-5(me23) double mutants expecting no reduction in PC formation if

only early recombination components had an effect. In these double mutants, we found that PC

formation was similar to cul-4(ok1891) single mutants (Fig 7H). Therefore, PC formation in cul-4
(ok1891) mutants is dependent upon DSB formation and early meiotic recombination progres-

sion but not later recombination events. cul-4(ok1891);rad-51(ok2218) mutants were also ana-

lyzed to identify if the recombinase RAD-51 is required for PC formation in cul-4(ok1891)
mutants. Interestingly, PC formation occurs in cul-4(ok1891);rad-51(ok2218) double mutants,

but to a lesser degree than in cul-4(ok1891) single mutants (~30% and 95% in Zones 3 and 4,

respectively and 23% of germlines with abundant PCs compared to 49% in cul-4 single mutants;

Fig 7B & 7J). Thus, the initiation of homologous recombination through SPO-11, and in part, the

formation of recombination intermediates is required for PC formation in cul-4(ok1891) mutants

(Fig 7K depicts the percentage of germlines with abundant, few, or no PCs). We did not observe

suppression of PC formation by spo-11 in cul-4::pole-1-3’UTR or ddb-1(tm1769) (Fig 7K) indicat-

ing that the effect is specific to the cul-4(ok1891) mutants. Regardless, our data demonstrates that

PC formation can be dependent on repair of SPO-11 generated DSBs, under some circumstances,

and PC formation is not necessarily uncoupled from recombination as previously thought.

Discussion

In this study, we examined the mutant phenotypes of the CRL4 E3 Ligase complex in the con-

text of meiotic prophase I in the C. elegans germline. All mutants tested in genes encoding for

the CRL4 E3 ligase complex exhibited PC formation except for rbx mutants (see model in S6A

Fig). Interestingly, PC formation in cul-4 C’ terminal truncation mutants was dependent on

early recombination. Mutants of CRL4 also had increased levels of RAD-51 foci, indicating

delays in meiotic recombination. cul-4 mutants had a mixed population of nuclei that either

had no RAD-51 foci or increased levels of RAD-51 foci. Due to these recombination defects,

crossovers in CRL4 mutants were at lower levels. CRL4 also may play a role in germline

Linear” was similar to “SYP-1 PC and Some Linear” with the exception that SYP-1 is elongated along>50% of DAPI.

“SYP-1 Partial Linear” nuclei had elongated SYP-1 along up to 50% of DAPI. “SYP-1 Mostly Linear” nuclei had SYP-1

along up to 50% of DAPI but less than 100%. “SYP-1 Linear” nuclei had fully elongated SYP-1 along all DAPI. “Other”

was defined as nuclei that had abnormal DAPI appearance). Left: representative images of Zone 4 (EP) in each

genotype; right: quantification of SYP-1 morphology throughout the germline of each genotype. Statistical

comparisons were performed with double mutants versus single mutants (Fisher’s exact test; p-values, � < 0.05). Scale

bars are 2μm. K) Analysis of PC presence in all germlines analyzed for each genotype. The number of PCs per germline

were grouped into three main categories: No PCs = germlines with no SC PC formation, Few PCs = germlines no

more than 5 PCs or less than ½ of a zone with PCs, and Abundant PCs = germlines with more than 5 PCs or greater

than ½ of a zone with PCs. Statistical comparisons were performed against cul-4(ok1891) mutants. Statistics: Fisher’s

exact test; p-values, � < 0.001, except cul-4; rad-51 that was significant only using 2x3 contingency table the Freeman-

Halton extension of Fisher’s Exact test (to calculate differences between 3 categories: No PCs x Few PCs x Abundant

PCs).

https://doi.org/10.1371/journal.pgen.1008486.g007
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protection from TE movement as mutants have increased expression of the Tc3 TE. Our data

indicate that CRL4 plays multiple roles in meiotic prophase I for SC assembly, meiotic recom-

bination, and the preservation of germline integrity.

The CRL4 E3 Ligase complex is required for preventing SC protein

aggregation into PC structures

PCs can be categorized based on their reaction to 1,6-Hexanediol, a chemical that dissolves

weak hydrophobic interactions. In the context of the PC, the ability to be dissolved by 1,6-Hex-

anediol, was interpreted as an indication that molecules can move rapidly in and out of the PC

structure, similarly to what is found in a wild type PC. The inability to dissolve the PC by

1,6-Hexanediol indicated that the structure is rigid. The nature of this rigid structure is open

to debate. In C. elegans PCs can be formed in wild type germlines, at elevated temperatures

[60]. These heat induced PCs were shown to be resistant to 1,6-Hexanediol treatment, and

therefore likely rigid [48]. In contrast, PCs formed by precocious self-assembly of the SC pro-

teins [61–64], defects in lateral element formation [18], and perturbation of chromosome

movement [49,50] likely still retain the dynamic characteristic of wild type SC, as PCs in some

of these mentioned perturbations were shown to be sensitive to 1,6-Hexanediol. CRL4 is likely

involved in prevention of formation of the rigid PC structure as 1,6-Hexanediol was unable to

disperse the PCs formed in CRL4 mutants (cul-4, gad-1, ddb-1, or csn-5 mutants). PC forma-

tion in CRL4 mutants also exhibited temperature-dependence as the number of SC PCs

increased at elevated temperatures [cul-4, gad-1, ddb-1, as well as the partial loss-of-function

mutant of cul-4 (See Fig 2 and model in S6B Fig)].

Two possible explanations exist as to why PC structures are rigid/1,6-Hexanediol-resistant

in CRL4 mutants. One possibility is that SC proteins are changing their structure in a way that

causes decreased dynamics. It cannot yet be determined if this change in structure is minimal

(conformational change) or severe (misfolded protein). This model suggests that CRL4 pro-

motes directly, or indirectly, protein structure of one or more of the SYP proteins. These mis-

shaped proteins can be degraded or refolded as nuclei progress through prophase, as most

nuclei do not contain PCs in late pachytene. The movement of nuclei in the germline is

approximately 1 row per hour which leaves significant amount of time for the process of pro-

tein degradation/refolding (estimated ~10 hours from mid to late pachytene). Alternatively, in

the absence of CRL4, altered protein modifications can lead to a rigid SC structure by adding/

removing binding partners, or generating a conformation different from wild type. Due to the

temperature sensitivity of the phenotype and the lack of direct evidence for modifications of

SYP proteins in cul-4 mutants we prefer the first model, but both models are plausible. Our

ability to detect a small population of modified SYP by this assay may be difficult, but accord-

ing to our current data, the role of CRL4 appears to be indirect.

A number of post-translational modifications have been shown to target and affect SC pro-

teins. One of the most iconic is sumoylation of Ecm11 in yeast, important for both SC assem-

bly and recombination [65–67]. In mouse and yeast, it was shown that both SUMOylation and

ubiquitination play an important role in SC assembly and recombination progression, both

through proteasome recruitment to chromosome axes [33,68]. SUMOylation plays no role in

SC assembly in C. elegans [69,70]; instead, SYP-1 acetylation [71] and phosphorylation [72],

are important for assembly and disassembly, respectively. Phosphorylation of SYP-4 was

found to be important for changing the structure of the SC from a dynamic nature, where SC

proteins are mobile, to one that is less dynamic [23]. We provide evidence that another post-

translational modification, ubiquitination, affects SC assembly in C. elegans ([34]and this man-

uscript). This is in agreement with studies demonstrating that proteasome inhibition leads to
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PC formation in mouse and C. elegans [33,68]. Like our study, these studies did not demon-

strate a direct effect of ubiquitination on SC proteins.

We have shown that mutants of csn-5, cul-4, ddb-1, and gad-1 all lead to similar phenotypes:

defects in SC assembly accompanied by PC formation. We have shown that the PCs formed in

CRL4 mutants are specific to central region proteins and do not affect axial element proteins

of the SC. However, we found no evidence for ubiquitination of SYP proteins, as no reproduc-

ible change in molecular mass was observed in SYP proteins in mutants of either cul-4
(ok1891) or csn-5(ok1064). This suggests that the effect of ubiquitination on SC formation is

indirect. It is possible that proteins involved with regulating the rigidity of the SC may be tar-

geted for ubiquitination.

In previous work, we have shown that mutants of the CSN/Cop9 complex have defects in

SC assembly [34]. Based on the similarity of phenotypes observed between cul-4 mutants and

CSN/Cop9 mutants and studies in other systems (reviewed in: [73]), we propose that CSN/

Cop9 deneddylates CRL4 (Fig 1A). After deneddylation, CRL4 then targets another protein(s)

for ubiquitination that indirectly maintains the liquid property of the SC, which is required for

SC assembly. The current model of CRLs states that their neddylated form is the active form,

and the lack of deneddylation prevents the recycling of the E3 ligase complex and/or its stabil-

ity [74]. Based on this model, an increase in neddylation (e.g., csn-5 mutants) or loss of CRL4

activity (e.g., cul-4, gad-1, ddb-1 mutants), both lead to the same outcome. The data we present

here are consistent with this model.

Another interesting finding is that the rbx genes have no role in SC assembly, which does

not fit the canonical CRL4 complex model (Fig 1A). It is possible that RBX-1 acts solely as a

member of CRL4 that is involved in DNA repair, as we have no evidence supporting its func-

tion in SC assembly, and instead see a difference in recombination intermediate abundance

(RAD-51). Both rbx mutants are expected to be null based on the fact that rbx-1(ok782) deletes

the whole gene and rbx-2(ok1617) deletes half of the coding frame. RBX-1 and RBX-2 are the

only ROC1 homologs in C. elegans. It is possible that other functional homologs exist that are

unidentifiable by sequence homology or that CRL4 in C. elegans can interact with other RING

domain proteins. The RING domain proteins acting in CRLs are small and part of the H2 sub-

family of RING finger proteins [73]. The C. elegans genome encodes for 101 other RING pro-

teins, any of which may act redundantly with rbx-1/2 (Moore & Boyd, 2004). Consistent with

these possibilities, rbx-1(ok782);rbx-2(ok1617) mutants progress through larval stages, while

cul-4 null mutants cannot. Alternatively, CUL-4 may function in regulation of PC formation

independently from its activity as an E3 ligase. This is supported by the fact that cul-4(ok1891)
mutants which have a C’ truncation that removes the RBX binding site, can support SC forma-

tion in ~35% of germlines at 20˚C. According to this model, the phenotypes associated with

cul-4(ok1891) mutants are attributed to the reduction in CUL-4 levels and not to the removal

of the RBX domain. As far as we know, there is no evidence for CRL4 acting outside of its role

as an E3 ligase, which may favor our first model (alternative RING protein to RBX-1/2).

The role of CAND-1 is to sequester the Cullin complexes once they are deneddylated to

prevent over-activation via rapid neddylation. In terms of PC formation, cand-1 mutants have

a relatively mild phenotype in comparison to other mutants of the CRL4 E3 ligase complex,

which is consistent with a previous study where defects of cand-1 mutants mildly mimicked

Cullin mutant phenotypes [46]. Along with the fact that cand-1 homozygous mutants are fer-

tile; these data suggest that cand-1 activity is only partially impactful where Cullin activity

occurs. We conclude that deactivation of Cullin ligases by deneddylation associated with the

binding of the CSN/Cop9 complex is more important for controlling CRL4 activity in the

germline than sequestering of the deneddylated ligases with CAND-1, indicating that quick

recycling of CRL4 is key for SC assembly.
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CRL4 is required for proper progression of recombination

In our previous work, we had shown that mutants of the CSN/Cop9 complex have defects in

recombination that were attributed to defects in SC assembly [34]. Since CSN/Cop9 acts

through CRL4, the same logical argument can be applied here. Lack of assembly of the central

region of the SC led to defects in recombination; DSBs are formed but cannot be repaired

though homologous recombination with the homologous chromosome [For example:

[22,50,75]]. Thus, PC formation in CRL4 mutants may explain why RAD-51 foci accumulate

in these mutants and crossover levels are reduced. Unlike what is found for SYP null mutants

[20–22,75], CRL4 mutants still show ~50–70% homologous synapsis which explains why

crossover levels are reduced but not eliminated in these mutants. This may be the most parsi-

monious explanation for the results. However, our data suggests that this may not be a com-

plete explanation. rbx-1;rbx-2 double mutants that have no PC formation still exhibit a small

but significant elevation in RAD-51 foci, compared to wild type. This may indicate that the

CRL4 complex in which RBX-1/2 are not participating regulates SC assembly, while the CRL4

complex in which RBX-1/2 are present has additional function(s) in DSB repair. Since rbx-1
mutants show only a mild effect on COSA-1 foci numbers, this indicates that the direct effects

of the CRL4 complex in DSB repair are minor compared to the indirect effects of SC assembly.

CUL4 has an established function in somatic DSB repair and DNA damage signaling. After

UV damage, CUL4 plays a role in recognition and nucleotide excision repair of damage as well

as halting of cell cycle progression after this damage [76,77]. CUL4 signals for DNA damage

recognition through ubiquitination of histones, H2B, H3, and H4, which has been shown to

facilitate Exo1-mediated resection [78,79]. CUL4 also facilitates DNA damage recognition by

stabilization of p53 through PCNA interactions [37], and CRL4 inactivation leads to the induc-

tion of p53 [80]. Upstream of p53 in DNA damage recognition and signaling is the Chk1

kinase. Chk1 has also been shown to be regulated by CUL4 in both normally cycling cells and

cells under replication stress [81]. If CRL4 directly affects repair of DSBs, the appearance of

irregular RAD-51 foci in cul-4 and ddb-1 mutants may be a cytological manifestation of a

direct effect on recombination.

Truncation of the C’ terminal domain of CUL-4

While ddb-1(tm1769) and gad-1(ok573) are likely null alleles, cul-4(ok1891) confers a partial

loss-of-function. cul-4(ok1891) mutants produce viable adults in low frequency, while two

other mutants of cul-4, gk434 and gk511, arrest in the larval stages. Why ddb-1 and gad-1 null

mutants still progress through development unlike the null cul-4 allele may be explained by

redundancy: CRLs are known to work with many alternative adaptor/substrate recognition

pair(s) [36]. Thus, DDB-1 and GAD-1 may have a more important function in the germline

than in larval development.

The ok1891 allele is a deletion located near the C-terminus of the protein, leading to a

frameshift mutation; while cul-4(gk434) and cul-4(gk511) are deletions predicted to cause ear-

lier truncations in the coding sequence. The ok1891 deletion removes the neddylation target

site and also the binding site for the E2 enzyme. Therefore, the cul-4(ok1891) mutation likely

affects CUL-4’s ability to form a fully functional CRL4 complex. However, the fact that some

worms of cul-4(ok1891) mutants [but not cul-4(gk434) and cul-4(gk511) mutants] do not trig-

ger larval arrest, indicates that this malformed CRL4 complex maintains partial activity cir-

cumventing the essential function of CUL-4 during larval development. It is possible that in

the absence of the lysine modified by neddylation in wild type CUL-4, another lysine serves as

an alternative site for modification in cul-4(ok1891) mutants, rendering it partially active. It is

perplexing how CUL-4 protein that lacks the C’ domain (RBX/ROC-E2 binding) was able to
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bypass the need for a functional CRL4 in some worms. It is possible that the E2 enzyme can

modify some CRL4 substrates without directly binding to CUL-4; the C’ truncated form of

CUL-4 that is still able to bind the substrate may provide some assistance to the E2 creating a

partial loss of function phenotype.

cul-4::pole-1 3’UTR have similar increased levels of RAD-51 as to these observed in the csn-
5, ddb-1, and gad-1 mutants. However, in cul-4(ok1891) mutants, meiotic prophase I nuclei have

SPO-11 independent DSBs as well as nuclei that lack SPO-11 DSBs. Moreover, in cul-4::pole-1
3’UTR mutants, PC formation is independent of SPO-11, whereas in cul-4(ok1891) mutants PC

formation is dependent on SPO-11. These findings indicate that germline nuclei of these two dif-

ferent cul-4 mutants did not produce the same defects, aside from PC formation, and this can be

explained by a gain-of-function in the cul-4(ok1891) allele. The gain-of-function phenotypes in

cul-4(ok1891) mutants may be due to the formation of an aberrant CRL4 complex (that binds the

substrate through DDB-1/GAD-1, but not the E2) that interrupts SPO-11 induced DSB forma-

tion. Alternatively, the unique phenotypes for cul-4(ok1891) mutants compared to cul-4::pole-1
3’UTR mutants may be due to a manifestation of a more severe reduction in CUL-4 levels. In this

model, CUL-4 forms a complex with other CRL4 complex proteins, beside GAD-1/DDB-1, and

performs germline functions outside SC assembly. In this case, CUL-4 activity in SC assembly

(GAD-1/DDB-1 dependent) is perturbed due to the reduction of CUL-4 availability, however

other CUL-4 activities such as DSB -dependent PC formation and transposition, are only abro-

gated when CUL-4 levels drop even further. This may explain why cul-4::pole-1 3’UTR mutants

(~70% of wild type protein levels) are similar to ddb-1 and gad-1 mutants, while cul-4(ok1891)
mutants (~15% of wild type protein levels) exhibit distinct phenotypes (S6A Fig). In this model,

different CRL4 complexes have different required CUL-4 proteins levels for proper function. The

caveat with this model vs. the gain-of-function activity model is that it assumes that the C’ trun-

cated CUL-4 is at least partially functional, retaining E3 ligase activity.

Another unique feature of cul-4(ok1891) mutants particularly in comparison to csn-5, ddb-
1, and gad-1 mutants is the incomplete penetrance of the PC formation phenotype. PCs were

present in 2 out of 3 germlines analyzed and two germlines of the same worm may exhibit dif-

ferent phenotypes. The high variation in levels of nuclear localization of CUL-4 in cul-4
(ok1891) mutants may explain the incomplete penetrance observed at 20˚C. Similarly, cul-4::

pole-1 3’UTR mutants also shows partial penetrance, but is observed at higher temperatures

(22–24˚C). In cul-4::pole-1 3’UTR mutants, CUL-4 levels are reduced but not to the same

extent as cul-4(ok1891) mutants. This may explain why PC formation only appears at higher

temperatures in cul-4::pole-1 3’UTR mutants.

Interplay between SC assembly and recombination in C. elegans
In organisms such as mouse or yeast, SC assembly depends on the initiation of meiotic recom-

bination by SPO-11 [7,8]. In the absence of SPO-11 in C. elegans, the SC assembles along

homologous chromosomes similar to wild type [6]. Thus, recombination is not typically seen

as an interfering process in SC assembly; it either has a positive or neutral effect. In cul-4
(ok1891) mutants, PC formation is reduced when early recombination is inhibited (ex. loss of

SPO-11 or RAD-54), but no such effect was observed when CRL4 levels are reduced by 3’UTR

replacement or by removing ddb-1, despite high penetrance of the PC-formation phenotype.

This suggests that in the presence of functional CRL4, crosstalk between recombination and

PC assembly is prevented in C. elegans, but aberrant CRL4 formation or its very low levels (in

cul-4(ok1891) mutants) leads to a link, or crosstalk, between PC formation and recombination.

The only other known example of crosstalk between recombination and SC assembly in C.

elegans is in the cra-1 mutant background where loss of SPO-11 caused increased assembly
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defects [25]. CRA-1 is a NatB domain-containing protein shown to have roles in synapsis and

crossover formation on autosomes as well as global histone acetylation [25,82]. In cra-1
mutants, SC assembly defects become more severe in the absence of early meiotic recombina-

tion intermediates [25]. Thus, CRL4 prevents recombination interfering with SC assembly and

CRA-1 inhibits some mechanism that promotes SC assembly through recombination.

Another important connection between SC and recombination was revealed in studies of

SC dynamics. Despite the fact that the SC may appear as a rigid structure, SC proteins were

shown to be exchanged in a dynamic manner throughout early to mid-prophase [23,24]. This

exchange was attenuated in late prophase and is dependent on the formation of crossovers

[24]. These findings imply that the recombination process may negatively regulate SC assem-

bly by limiting the influx of new SYP proteins to the SC. Unlike CRL4 mutants which mainly

affect early to mid-prophase, the effect on SC dynamics is restricted to late pachytene. How-

ever, if PCs can be considered a less dynamic SC structure than assembled SC, then our studies

and that of [23] both show similar effect that are executed at different time points in meiotic

prophase I. Both studies show that recombination can promote a less dynamic SC structure,

but depending on the point in prophase can lead to a different effect: PC formation in early

prophase, while promoting SC disassembly in late prophase. This may also relate to the desy-

napsis pathway that opposes SC stability after the SC is formed. In this pathway, recombina-

tion intermediates destabilize the SC for chromosomes in which not all crossovers have been

formed, leading to SC disassembly but without PC formation [83]. However, this pathway is

not only phenotypically distinct but also known to act later in prophase, whereas CRL4 acts

much earlier in prophase during SC assembly.

In cul-4 C-terminal truncation mutants, PC formation is reduced when recombination is

prevented (loss of SPO-11) or inhibited at its early steps (loss of RAD-54 and to a lesser degree

RAD-51). Loss of the pro-crossover factor MSH-5 had no effect on PC formation. This indi-

cates that PC formation is inhibited when recombination intermediates (RAD-51 covered

ssDNA) do not form or when recombination intermediates are locked in position (form joint

molecules but are unable to disassemble). However, the effect of removing RAD-51 on PC for-

mation in cul-4(ok1891) mutants is milder than that of removing RAD-54. This suggests that

the mechanism involved responds to perturbation of recombination at different levels, when

perturbation of early (spo-11) or late (rad-54) events in recombination is more important. In

this model, the RAD-54 protein itself may directly participate in the PC formation. Alterna-

tively, RAD-51 may be required for amplification of the signal caused by impaired recombina-

tion, proposing that in rad-51 mutants the signal existed but cannot be transmitted. As

discussed above, some aspects of DSB repair defects in CRL mutants may be independent of

PC formation, thus it is plausible that CRL4 has more than one target for ubiquitination; one

target that promotes formation of functional recombination intermediates and another target

involved in SC assembly.

CUL-4’s multiple roles in meiotic prophase I

In previous studies, CUL4 has been shown to play multiple roles in meiotic prophase I. In

mouse and the Chinese mitten crab, loss of CUL4 led to increased levels of apoptosis, decreased

and malformed spermatozoa, and a delay of meiotic recombination with accumulation of late

recombination intermediates [29,41,84]. This study provides further evidence that CUL-4 ubi-

quitination activity has an important function in meiosis. Despite the clear importance of CRL4

in meiosis, the question remains as to the identity of CRL4 targets in meiotic prophase I.

CUL-4 plays an important role in cell cycle progression and meiotic entrance. CUL-4 pre-

vents re-replication in S-phase via ubiquitin-signaled degradation of CDT-1, a replication
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licensing factor. This function is well conserved and is present in humans, mice, frogs, worms,

flies, and yeast (reviewed in: [43]). In C. elegans, CRL4 was found be important for export of

CDC-6, another replication licensing factor that complexes with CDT-1 [39]. We have shown

that CSN/Cop9 mutants have proliferation defects that account for the smaller germlines observed

in these mutants [34], and CRL4’s function in replication licensing may explain this phenotype.

We have shown here that CRL4 acts in SC assembly and has both direct and indirect roles

in recombination. Through the analysis of cul-4(ok1891) mutants, we have shown that dys-

functional CRL4 can interfere with both DSB formation and downregulation of SPO-11 inde-

pendent DSBs. Loss of CUL-4 could affect localization or function in a number of different

proteins important for DSB formation. Another possibility is that DSB formation defects stem

from CUL-4’s effect on chromosomal structure, since CUL-4 is known to ubiquitinate histones

in humans and mice (discussed in: [85]). Our analysis also demonstrated that dysfunctional

CRL4 can interfere with the repression of the Tc3 transposase. While we have not directly mea-

sured mobility due to the sterility of CRL4 mutants, we suspect that it is increased; if so, trans-

poson movement could contribute to the SPO-11 independent DSBs observed in the cul-4
mutant. [13] have shown that the PIWI pathway downregulates Tc3 expression and has no

role in the regulation of Tc1 transposase expression [13]. Therefore, one explanation for CRL4

mutants’ effects on Tc3 transposase expression would be the mis-regulation of PIWI.

To conclude, we propose that CRL4 plays a central role in meiotic prophase events; it is

required for maintaining the functional and dynamic SC, and its proper activity promotes for-

mation of recombination intermediates that do not interfere with SC assembly. Dysfunctional

CRL4 can interfere with DSB formation and activate transposition. Future studies should aim

to identify the targets of CRL4 in meiosis.

Materials and methods

Strains

C. elegans strains were cultured at standard conditions at 20˚C (Brenner, 1974). The wild type

background strain used was N2 Bristol. The following mutations and chromosome rearrange-

ments were used: LGI: akir-1(gk528), htp-3(tm3655), rad-54&snx-3(ok615), rbx-2(ok1617), rrf-1
(pk1417), hT2[bli-4(e937) let-?(q782) qIs48] (I;III); LGII: cul-4(ok1891), mIn1 [mIs14 dpy-10
(e128)] II; LGIV: csn-5(ok1064), ddb-1(tm1769), msh-5(me23), rad-51(ok2218), spo-11(ok79), spo-
11(iow110), nT1[qIs51] (IV;V); LGV: cand-1(tm1683), gad-1(ok573), rbx-1(ok782), nT1[qIs51]
(IV;V).The following transgenic lines were used: syp-4(iow28[V5::syp-4]) I, cul-4(iow64[cul-4::

pole-1-3’UTR]) II, meIs8[pie-1p::GFP:: cosa-1+unc-119(+)] II, meIs9[unc-119(+) pie-1promoter::
gfp::SYP-3];unc-119(ed3) III, syp-3(iow69[3xFLAG::syp-3]) III, ddb-1(iow60[OLLAS::ddb-1]) IV,

gad-1(iow61[3xFLAG::gad-1]) V, syp-1(iow68[syp-1::3xFLAG]) V, syp-2(iow27[syp-2::V5]) V.

CRISPR/Cas9 generation of syp-1::FLAG, syp-2::V5, FLAG::syp-3, V5::syp-4,

OLLAS::ddb-1, FLAG::gad-1, and cul-4::pole-1-3’UTR
All CRISPR/Cas9 reactions used ssODNs and crRNAs generated by Integrated DNA Technol-

ogies (IDT), materials used are listed below in the table. Recombinant Cas9 protein was iso-

lated by QB3 MacroLab (University of California, Berkeley). A dpy-10 co-injection marker was

used as a measure of successful Cas9 excision. CRISPR/Cas9 was performed as described in

[86](with slight modifications) and the co-CRISPR protocol described in [87]. spo-11 and ddb-
1are linked therefore the double mutant was created by CRISPR/Cas9. Deletion of spo-11 was

generated as in [88] but by injection into ddb-1(tm1769/nT1 strain [spo-11(iow110) deletion

was verified as homozygous the PCR of ddb-1(tm1769) homozygotes, non-balanced worms].
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RNAi Screen

To identify possible adapter proteins and E2 conjugating enzyme(s) involved in SC assembly,

we performed RNAi knockdown of 41 different possible adapter proteins, containing the

DDB1 binding WD40 domain (DWD), and 22 predicted E2 enzymes. The screen was per-

formed in an akir-1(gk528);rrf-1(pk1417) double mutant background. Previous work in our

lab has shown that akir-1(gk528) mutants can be used as a sensitized background to find genes

that are involved in SC assembly [34,50]. rrf-1 is a gene encoding an RNA dependent RNA

polymerase expressed in somatic tissue; rrf-1 mutants were used to direct RNAi knockdown

specifically to the germline, as these RNAi targets likely have a function in somatic tissue. A

gfp::syp-3 transgenic line was crossed into these double mutants to quantitatively determine if

each knockdown condition influenced SC assembly. Germlines were examined for PC forma-

tion in pachytene; PCs were defined as SC structures that are at least two times the width of lin-

earized SC. In this screen, we exposed our double mutants with the gfp::syp-3 transgenic line to

RNAi by feeding and performed whole worm ethanol fixation for analysis. RNAi clones were

inoculated overnight in Lauria broth and ampicillin (50 ng/μl). Bacterial cultures were seeded

on plates containing IPTG then allowed to grow for a minimum of 12 hrs. at 37˚C. RNAi

clones from the Ahringer C. elegans RNAi library were used [89]. L1 synchronized larvae were

placed on the seeded RNAi bacterial plates, pL4440 empty vector was used as a control. Once

the next generation reached L4 stage, they were moved to another set of RNAi seeded plates.

The next generation at L4 stage were further moved to another set of plates and as day 1 adults

were ethanol fixed and examined for PC formation.

Immunofluorescent staining and microscopy

Adult hermaphrodites were dissected, genotypes were dissected at different times, based on

growth rate, after L4 stage. Wild type, csn-5(ok1064), cand-1(tm1683), rbx-2(ok1617), spo-11
(ok79), rad-54(ok615), msh-5(me23), and rad-51(ok2218) strains were dissected 20–24 hrs.

post-L4. ddb-1(tm1769), gad-1(ok573), and rbx-1(ok782) strains were dissected 30–35 hrs.

Gene target ssODN crRNA

syp-1 5’-catactgcagatgttcgccgaaagagaggagggaagaaagactacaaagaccatg

acggtgattataaagatcatgaTatcgaTtacaaggatgacgatgacaagtaatgtgtgtgtggggaagaaacgactatgtaccatttcaatc -3’

5’- GGGAAGAAATAATGTGTGTG -3’

syp-2 5’- GTCTTAAAAcgagagccgaagctcatactgcagatgttcgGcgTaagCgaggaggCaagaaaggtaagcc

tatccctaaccctctcctcggtctAgatAGTacTtaatgtgtgtgtggggaagaaacgactatgtaccatttcaatcttgtgct

-3’

5’- tggttgaaacCTtGgagccTtgg -3’

syp-3 5’- ggccatttcaatatctccaatttcagagataaATGgactacaaagaccatgacggtgattataaagatcatgaTatc

gaTtacaaggatgacgatgacaagAATTTCGAAAAGCTTGTCAGTCAGGCAGTAAATGGTGACCGTT

TTAAAATTTTTTGTGGGCAGCTCACTGAGTTCACCAACTCGCTCGCTGGGGAAAG -3’

5’- AATTCATTTATCTCTGAAAT -3’

syp-4 5’- gttcggtacggtaacctcatttttcatcaaaattttttatttcaaggcgaaataatgggtaagcctatccctaacc

ctctcctcggtctAgatAGTacTtcgtttccgacgTtacaagtGAgAccaaatgagaaaaatccaaaagttctgcgatgcc -3’

5’- tttggTcTCacttgtaAcgtcgg -3’

ddb-1 5’- tacagtaattggaatgatagtcgagacgataatcactttcccatgagacgtggtccGAGCTCgttggcg

aatccggagtgcattctcgcTaaatcctcgatgactttgagaatttcaactggatctctt -3’

5’- tctcaaagtcatcgaggatt

-3’

gad-1 5’- gacagatgaaaaacaaaaaattaatgcaacgactacttgtcatcgtcatccttgtaAtcgatAtcatgat

ctttataatcaccgtcatggtctttgtagtccttcgttctcggcattttAaaCacaggctgtagctcttcgtcatcttgatcttctg -3’

5’- gttctcggcattttgaagac

-3’

cul-4 5’-aataatctaacattttcaacagaacaaattggatggactacaaagaccatgacggtgattataaagat

catgaTatcgaTtacaaggatgacgatgacaagacatctggagcaccaccgactatttcaacagaaaaaa -3’

5’-agaacaaattggatgacatc-3’

cul-4::pole-13’UTR 5’- aatttcgtataaagaattcaatcaaataaccatgtaaatagctgaaaatgaattcattggaaaaatga

gtagatatatgttacagtaaaaagtagttacccgaaaaaatacaaccaaaaaaattagggaaatttacgcaacat

aattatagctagatgcTtcttcaggatccctcgatatatattcacgttcgatgagt -3’

5’- ccaaaatactgttgaataca

-3’

https://doi.org/10.1371/journal.pgen.1008486.t001
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post-L4. The cul-4(ok1891) strain was dissected 48–52 hrs. post-L4. Immunofluorescent stain-

ing antibodies used are as follows: α-SYP-1 (1:500, VDAPTEALIETPVDDQSSGFL), α-RAD-

51 (1:10,000; ASRQKKSDQEQRAA), α-HTP-3 (1:500; gift from M. Zetka), α-HIM-8 (1:1,000;

#4198.00.02, Sdix), α-FLAG (1:500; #F1804, Sigma), and α-OLLAS (1:500; #A01658, Gen-

script). Secondary antibodies used were α-goat Alexa Fluor 549, and α-rabbit Alexa Fluor 488.

All gonads were stained with DAPI (1:2,000 dilution of a 5-mg/ml DAPI stock in PBS-Tween)

for 10 min. Immunostaining was performed as in [22]. In short, worms were dissected in M9

buffer and freeze cracking was applied. Dissected germlines were then incubated in methanol,

followed by 4% PFA of 30 minutes at room temperature. 1X PBS-Tween was used as wash

buffer. Fixed samples were imaged with Vectashield medium. DeltaVision wide-field fluores-

cence microscope system (Applied Precision Ltd.) with Olympus 100x/1.40-NA lens was used

for image acquisition. Using a coolSNAPHQ camera (Photometrics) and softWoRx software

version 7.0.0. (Applied Precision Ltd.), 0.20-μm optical sections were collected. Images were

deconvolved using softWoRx. Adobe Photoshop CC was used for image processing. Images

were adjusted after assembly using the levels function; images of wild type and mutants in the

same panel were manipulated identically and simultaneously.

Sample size for figures

GraphPad Prism was used for generating of all graphs and statistical analyses. n reflects the

number of either germlines or nuclei analyzed. Fig 1: C- 10 germlines for all genotypes ana-

lyzed; D- 1,712 nuclei; E- 695 nuclei; F- 755 nuclei; G- 657 nuclei; H- 619 nuclei; I- 711 nuclei;

J- 1,194 nuclei; K- 1,613; from 3 independent germlines for each genotype. K- wild type 28,

csn-5(ok1064) 39, cul-4(ok1891) 39, ddb-1(tm1769) 29, gad-1(ok573) 23, rbx-1(ok782) 27, rbx-2
(ok1617) 35, rbx-1(ok782);rbx-2(ok1617) 25, cand-1(tm1683) 21 germlines analyzed. L wild

type 189 cul-4(ok1891) 162 SC and 47 PC nuclei, Fig 2: Fig 3: A- wild type 50, flag::cul-4 70,

flag::cul-4(ok1891) 90, and flag::cul-4::pole-1 3’UTR 70, B- From left to right: wild type 24, 38,

12, 16,13 and 8 gonads, flag::cul-4::pole-1 3’UTR 27, 14, 12, 8, 28 and 14 gonads. C- wild type

711 nuclei, cul-4(ok1891) 300 nuclei, D- wild type 15, 24 and 9 germlines, cul-4(ok1891) 15, 39

and 20 germlines, cul-4(ok1891)/+ 21 and 23 germlines, ddb-1(tm1769) 34 and 29 germlines,

gad-1(ok573) 5 and 23 germlines, Fig 3: B- wild type 866 nuclei, csn-5(ok1064) 592 nuclei, cul-
4(ok1891) 436 nuclei, ddb-1(tm1769) 502 nuclei; D- wild type 907 nuclei, csn-5(ok1064) 625

nuclei, cul-4(ok1891) 532 nuclei, ddb-1(tm1769) 346 nuclei from 3 independent germlines for

each genotype. Fig 4: A- 1,124 nuclei; B- 552 nuclei; C- 665 nuclei; D- 627 nuclei; E- 1,396

nuclei; F- 755 nuclei; G- wild type 1,124 nuclei, csn-5(ok1064) 552 nuclei, cul-4(ok1891) 665

nuclei, ddb-1(tm1769) 515 nuclei, and rad-54(ok615) 812 nuclei from 3 independent germlines

G 100 nuclei, H- 100 nuclei, I- 10 nuclei per genotype. Fig 5: A- 1,124 nuclei; B- 665 nuclei; C-

1,133 nuclei; D- 422 nuclei; E- 1,444 nuclei; F- 560 nuclei; G- 1,701 nuclei; H- 431 nuclei from

3 independent germlines; I- Between 30 and 70 worms were used for each sample, 4 biological

replicates with 3 technical replicates were analyzed for each genotype. Fig 6: B- wild type 39,

csn-5(ok1064) 60, cul-4(ok1891) 83, ddb-1(tm1769) 43, gad-1(ok573) 55, cand-1(tm1683) 89,

rbx-1(ok782) 79, rbx-2(ok1617) 79 nuclei were analyzed from 3 independent germlines; D-

wild type 22, rbx-1(ok782) 20, rbx-2(ok1617) 21, cand-1(tm1683) 20 diakinesis-1 nuclei were

analyzed. Fig 7: A- 1,712 nuclei; B- 657 nuclei; C- 1,694 nuclei; D- 439 nuclei; E- 1,629 nuclei;

F- 501 nuclei; G- 1,646 nuclei; H- 701 nuclei; I- 1,399 nuclei; J- 610 nuclei; K- wild type 28, cul-
4(ok1891) 39, spo-11(ok79) 22, cul-4(ok1891);spo-11(ok79) 23, rad-51(ok2218) 23, cul-4
(ok1891);rad-51(ok2218) 28, rad-54(ok615) 20, cul-4(ok1891);rad-54(ok615) 33; msh-5(me23)
27; cul-4(ok1891);msh-5(me23) 30, csn-5(ok1064) 39, csn-5(ok1064); spo-11(ok79) 31, ddb-1
(tm1769) 29, ddb-1(tm1769); spo-11(ok79) 19, cul-4::pole-1-3'UTR; spo-11(ok79)/nT1 18 23˚C,

CRL4 in recombination and the folding of synaptonemal complex proteins

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008486 November 18, 2019 27 / 38

https://doi.org/10.1371/journal.pgen.1008486


cul-4::pole-1-3'UTR; spo-11(ok79) 28 23˚C, cul-4::pole-1-3'UTR; spo-11(ok79)/nT 11 25˚C, cul-
4::pole-1-3'UTR; spo-11(ok79) 10 25˚C, germlines analyzed. S4 Fig: B through E- at least 3 rep-

licates of each western was performed with whole worm lysate from 30–50 worms per geno-

type, S4 Fig: wild type 12, cul-4(ok1891) 12 DHC-1 patches; from at least 3 independent

germlines per genotype, S6 Fig: A- 627 nuclei; B- 1,328 nuclei; C- 1.592 nuclei; D- 1.570 nuclei;

E- 1,493 nuclei; F- 507 nuclei; from 3 independent germlines per genotype.

Germline length microscopy and analysis

Adult hermaphrodites were fixed with ethanol and sealed with DAPI and Vectashield upon

reaching day one adult stage. Full worm images were taken with a Leica DM RXA compound

light microscope with QI Click Camera 20X lens. Images were analyzed using softWoRx soft-

ware by calculating the distance between the distal tip cell to the end of pachytene. Ten worms

were analyzed per genotype. Statistical comparison: two-tailed Mann-Whitney.

Germline zonal determination

Germlines were divided into zones based on length: wild type length having seven zones and

cul-4(ok1891) mutants having six zones. Each zone represented a time point in meiotic pro-

phase I progression (described in Results; SC assembly is perturbed in CRL4 mutants). Zones

were created by imaging from the distal tip cell using a 512x512 pixel dimension frame of

view. Images were taken until the end of pachytene.

GFP::SYP-3 analysis

Adult hermaphrodites were fixed with ethanol and sealed with DAPI and Vectashield upon

reaching day one adult stage. Whole worms were observed under the Deltavision System

described earlier. Germlines were examined for GFP::SYP-3 PC formation (see RNAi Screen
for PC definition).

FISH

5S locus FISH and analysis was performed as in [21]. Creation of the 5S rDNA FISH probe

was done by amplification of the 1kb 5S rDNA locus with primers: 50-TAC TTG GAT CGG

AGA CGG CC-30 and 50-CTA ACT GGA CTC AAC GTT GC-30 and fluorescent labeling with

terminal deoxynucleotidyl transferase. Freeze crack method was used as in Immunofluorescent
Staining and Microscopy except with 7.4% PFA applied before freezing. 2X SSC-tween was

used as buffer. Hybridization of the 5S rDNA probe to germline nuclei was performed at 94˚C

for 90s. Three germlines per genotype were scored.

FISH and SYP-1 immunostaining

Germline squash preparations were prepared as in [85]. Squash preparations were first pro-

cessed as in “Immunofluorescent Staining and Microscopy” with α-SYP-1 (1:500, VDAPTEA-

LIETPVDDQSSGFL) and secondary antibody α-goat Alexa Fluor 549. Nuclei were fixed in

3.7% PFA then hybridized with the 5S rDNA probe as in “FISH”. Nuclei were then stained

with DAPI. Analysis of homologous synapsis in pachytene nuclei was performed by searching

for nuclei with linear SYP-1 and at least one 5S rDNA focus residing on or next to linearized

SYP-1. Paired foci were determined by a distance of 0.7μm or less between 5S rDNA foci; as in

“FISH and HIM-8 Analysis” below.
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Western blot

Whole worm lysis was flash frozen in SDS urea lysis buffer and 2-mercaptoethanol (S3A, S3B

& S3E Fig), or whole worm lysis was frozen and incubated with SDS urea lysis buffer and

2-mercaptoethanol during thaw (S3C, S3D & S3F Fig). Samples were boiled and run on a 10%

SDS Express plus PAGE gel (#M01012; GenScript). 1X PBS-Tween was used as wash buffer.

Antibodies used were as follows: α-V5 (1:2,000- S3A, S3B & S3E Fig, #46–0705; 1:5,000- S3C,

S3E & S3F Fig, R960-25; Invitrogen), α-FLAG (1:3,000; #F1804, Sigma-Aldrich), and α-tubulin

(1:1,000- S3A, S3B & S3E Fig; 1:10,000- S3C, S3D & S3F Fig; ab1157911, Developmental Stud-

ies Hybridoma Bank) used as loading control. Secondary antibodies used were α-mouse anti-

body conjugated to HRP (1:10,000- Sup 3A, B, & E; 1:5,000- Sup 3C, D, & F). 5% milk in 1X

PBS-Tween was used for blocking (S3A, S3B & S3E Fig; no blocking was used in S3C, S3D &

S3F Fig). WesternBright ECL (#K-12045-D20; Advansta) was used for HRP detection and blot

development. The LI-COR Odyssey Infrared Imaging System was used for development and

analysis of western blots. For proteasome inhibition 100 adult worms were incubated in 1μM

MG132 (EMD Millipore) for 8 hours, 20-24hrs after L4 stage selection. These worm incuba-

tions were then used for western blot analysis.

RT-PCR

RT-PCR was performed in cul-4(ok1891) strains. Superscript III OneStep RT-PCR kit (12574–

026; Thermo Fisher Scientific) and primers 5’-ttagctgctttcgagccttc-3’ and 5’-gcttcaaatccgcaaat-

gat-3’. The obtained RT-PCR fragment was sequenced to reveal a deletion of part of exon 10

and most of exon 11 which created an out of frame deletion (junction sequence: TCTCGAT-

CAAATGGTA/AGAAGGAAGGTACTGTG).

qRT-PCR

Quantitative RT-PCR was performed on Tc1 and Tc3, TC1/Mariner class DNA transposable

elements, in wild type and cul-4(ok1891) strains. Superscript III OneStep RT-PCR kit (12574–

026; Thermo Fisher Scientific) and primers designed as in [13] were used. Tc1: 5’-CTT GAA

GCG CTT CTT GTC ACGC-3’ and 5’-CCA ACC ACT GGA ACG ACC GTG-3’; Tc3: 5’-GAG

CGT TCA CGG AGA AGA AG-3’ and 5’-AAT AGT CGC GGG TTG AGT TG-3’. The Roche

LightCycler 480 Real-Time PCR System was used for qRT-PCR and analysis of Tc1 and Tc3
transcript abundance. Actin RT-PCR was used for normalization: 5’-ATC ACC GCT CTT

GCC CCA TC-3’ and 5’-GGC CGG ACT CGT CGT ATT CTT-3’. 30 worms with equal num-

bers of wild type and cul-4(ok1891) mutants used in each qRT-PCR prep. Each qRT-PCR prep

was split into 3 technical controls. For each genotype, 3–4 biological controls were used. Sam-

ples were excluded if Cts> 29 for actin or if Ct = 40 for Tc3 in any of the replicas. Each Tc3

sample was normalized to actin and two paired samples were subtracted to get ΔΔCT. Relative

expression was obtained from ΔΔCT.

SYP-1 localization analysis

Qualitative scoring of SYP-1 localization patterning within individual nuclei was determined

by placement into one of eight different categories. “No SYP-1” was defined as having no SYP-

1 immunofluorescence present along chromosomes (DAPI). “SYP-1 PC” were nuclei with

only PC formation present, no elongation of SYP-1 along DAPI. “SYP-1 PC and Some Linear”

was the presence of PC(s) in the nucleus but also partial elongation of SYP-1, <50% of DAPI.

“SYP-1 PC and Linear” was similar to “SYP-1 PC and Some Linear” with the exception that

SYP-1 is elongated along >50% of DAPI. “SYP-1 Partial Linear” nuclei had elongated SYP-1
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along up to 50% of DAPI. “SYP-1 Mostly Linear” nuclei had SYP-1 along up to 50% of DAPI

but less than 100%. “SYP-1 Linear” nuclei had fully elongated SYP-1 along all DAPI. “Other”

was defined as nuclei that had abnormal DAPI appearance, for example in csn-5(ok1064)
mutants this represented micronuclei formation, and in cul-4(ok1891) mutants this repre-

sented an EMO-like dispersed DAPI appearance. Statistical comparison: Fisher’s exact test.

RAD-51 foci analysis

All zones were quantified for number of RAD-51 foci per nucleus as in [22]. Three germlines

were scored per genotype and the mean was determined. Statistical comparison: two-tailed

Mann-Whitney.

Fluorescence intensity measurements

16-bit non-deconvolved images acquired with a one second exposure were analyzed by FIJI

software. Intensity measurements using anti-FLAG antibody were gathered by drawing a circle

around a nucleus at its greatest width from a single Z-stack from PMT or LP. For each geno-

type and region, 10 nuclei per germline were measured for three or more germlines. Back-

ground was recorded at 4 different positions inside the cytoplasmic space and the average of

the cytoplasmic intensities was subtracted from each nuclear intensity recording. Mann-Whit-

ney U test (GraphPad Prism 7 software) was used to statistically compare intensities of stain-

ing. For RAD-51 intensity analyses, images acquired for RAD-51 Foci Analysis were used. Full

nuclear projections were created and analyzed in ImageJ. An ellipse (1 pixel wide) was placed

around a targeted nucleus, based on DAPI staining, using the circle tool. Mean intensity of the

RAD-51 channel was calculated and divided by the number of RAD-51 foci with that nucleus.

These values were then normalized to the mean intensity of the RAD-51 channel in an ellipse

placed in the cytoplasm. Statistical comparison: two-tailed Mann-Whitney.

Irregular RAD-51 foci analysis

Images acquired for RAD-51 Foci Analysis were used. Individual nuclei were analyzed for

abnormal RAD-51 appearances. Abnormal RAD-51 were defined as anything that did not

form wild type puncta. Examples of this include stretches of RAD-51 or a globular “lobed”

appearance larger than wild type puncta. Statistical comparison: Fisher’s exact test.

1,6-Hexanediol treatment and analysis

Adult worms were dissected in Egg buffer as in timeline for different mutant strains described

in Immunofluorescent Staining and Microscopy after L4 stage selection. Dissected germlines

were incubated in 15% 1,6-Hexanediol then fixed in 3.7% PFA. Germlines were then immuno-

fluorescent antibody stained for SYP-1 and HTP-3. Using the DeltaVision system and soft-

WoRx software, images were analyzed for presence of SYP-1 PC formation and linearization

along the axial element HTP-3. Statistical comparison: Fisher’s exact test.

FISH and HIM-8 analysis

Zonal division, as in SYP-1 Localization Analysis, was used to divide germlines and were

scored for 5S rDNA FISH signal/HIM-8 foci pairing in each nucleus. Paired foci were deter-

mined as being 0.7-μm or less apart [21]. Statistical comparison: Fisher’s exact test. Simulta-

neous antibody staining and FISH was performed on squashes as in [17].
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COSA-1 foci analysis

GFP::COSA-1 was quantified in the final zone of each germline (either Zone 6 or 7 dependent

upon germline length), corresponding to late pachytene [59]. COSA-1 foci were counted per

nucleus with a scoring of at least three germlines per genotype. Statistical comparison: two-

tailed Mann-Whitney.

Diakinesis nuclei analysis

Images were taken of the final diakinesis nucleus (diakinesis -1) prior to spermathecal

entrance. Number of DAPI bodies were totaled following counting in 3D. Statistical compari-

son: two-tailed Mann-Whitney.

DHC-1::GFP movement analysis

Analysis of movement was performed in DHC-1::GFP transgenic strains in the wild type (N2)

and cul-4(ok1891) mutant background. Images of single plane at TZ (based on distance from

tip and presence of DHC-1::GFP foci) were taken for 60 s. Analysis was performed in ImageJ

using the plugin Manual Tracking for tracking of DHC-1::GFP foci. Data points were taken at

the onset and conclusion of each directional movement, obtaining the calculation of total dis-

tance traveled, mean velocity, number of times foci changed direction, and time between

movements of foci. All DHC-1::GFP foci visualized during the whole duration of the movie

(60s) were analyzed. Statistical comparison: two-tailed Mann-Whitney.

Statement on data and reagent availability

Strains are available upon request.

Supporting information

S1 Fig. CRL4 E3 ligase complex mutants exhibit PC formation during SC assembly. A, B, &

D-J) Representative images of SYP-1 immunofluorescent staining in CRL4 mutants through-

out progression of the germline. Blue (DAPI) and red (SYP-1). Scale bars are 2μm. C)

Table representing analysis of GFP::SYP-3 in the cul-4(ok1891) mutant background. Results

are grouped into three categories: whole worms with no PC formation in either germline,

worms with PC formation in one germline, or worms with PC formation in both germlines.

The number of germlines with PCs is not significantly different from observations in SYP-1

immunofluorescent analyses. Scale bars are 2μm. K-N) Immunostaining using antibodies

against HTP-3 (green) and SYP-1 (red) in CRL mutants shows that HTP-3 localized to chro-

mosomes in linear fashion about the ame time SYP-1 appears, in all genotypes analyzed. Scale

bars are 5μm.

(TIF)

S2 Fig. GAD-1, CUL-4, and DDB-1 localize to meiotic germline nuclei. A) Representative

images of immunofluorescent staining against OLLAS is presented as progression through

meiotic prophase I of the ddb-1::OLLAS transgenic line. B) Representative images of immuno-

fluorescent staining against FLAG is presented as progression through meiotic prophase I of

the e gad-1::FLAG transgenic line. C) Representative images of immunofluorescent staining

against FLAG in late pachytene of the FLAG::cul-4 transgenic line. Circles indicate nuclei, as

an example of the quantification in Fig 2A. Top (A and B)/left (C): Blue (DAPI) and green

(FLAG/OLLAS), bottom (A and B)/right (C): grey (OLLAS/FLAG). All lines were generated
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through CRISPR/Cas9 insertion. Scale bars are 2μm.

(TIF)

S3 Fig. No evidence for SYP ubiquitination in CRL4 mutants. A-F) Western blot analysis of

SYP proteins (syp-1::FLAG; syp-2::V5; FLAG::syp-3; V5::syp-4) was performed with whole

worm lysates. Expected sizes for SYPs are: SYP-1 56.6 kDa, SYP-2 23.7 kDa, SYP-3 25.8 kDa

and SYP-4 67.3 kDa. See Materials and Methods for antibodies and dilutions. G-J) Western

blot analysis of SYP proteins as in A-F but with proteasome inhibition (MG132). In J a shift

was observed for SYP-3 in cul-4(ok1891) mutant background but this was not repeated in 2

other blots. For G and I the same wild type control is used. K is quantification of standard

western blots, while L is quantification with proteasome inhibition. For K and L all replications

were included (n of at least 3 western blots).

(TIF)

S4 Fig. CRL4 E3 ligase complex mutants that show meiotic defects also exhibit persistent

SUN-1 patches. A-I) Representative images of SUN-1 immunofluorescent staining in CRL4

mutants in TZ and LP, genotypes indicated on the side. Blue (DAPI) and green (SUN-1).

SUN-1 patches are present in all genotypes at TZ, but some LP nuclei contain patches as well

in CRL4 mutants that form PCs or show accumulation of recombination intermediates (C, G,

B and H). Scale bars are 2μm. J-M) analysis of movement of DHC-1::GFP foci in wild type and

cul-4(ok1891) mutants in TZ nuclei shows no requirement for CUL-4 in chromosome move-

ment.

(TIF)

S5 Fig. CRL4 E3 ligase complex mutants have increased levels of meiotic recombination

intermediates (RAD-51). A-D) Left: representative images of RAD-51 immunofluorescent

staining in CRL4 E3 ligase mutants. Blue (DAPI) and green (RAD-51). Right: graphical analy-

ses of RAD-51 foci appearance throughout the germline. Statistical comparisons were com-

pared to wild type worms (Mann Whitney; p-values, � < 0.05). E & F) Left: representative

images of RAD-51 immunofluorescent staining. Right: analyses of number of RAD-51 foci per

nucleus throughout meiotic prophase I. Blue (DAPI) and green (RAD-51). Statistical compari-

sons of double mutants were made against single mutants (Mann-Whitney; p-values, � <

0.05). Scale bars are 2μm. G) Fold change values in cul-4(ok1891) and ddb-1(tm1769)) mutants

(Tc3 expression normalized to actin) average +/- SEM.

(TIF)

S6 Fig. A model for CRL4 function in SC assembly. A) SC assembly in the genotype tested,

B) the connection between recombination and PC formation in CRL mutants. The structure

of the CUL4 complex is based on work in other organisms. Physical interaction between

DDB-1 and CUL-4 was shown in C. elegans by others [40].

(TIF)

S1 File. Underlying numerical data. This file contains the underlying numerical data for all

the figures. Each tab corresponds to a figure panel with numerical data.

(XLSX)
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19. Smolikov S, Eizinger A, Schild-Prüfert K, Hurlburt A, McDonald K, Engebrecht J, et al. SYP-3 restricts

synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis

elegans. Genetics. 2007; 176: 2015–2025. https://doi.org/10.1534/genetics.107.072413 PMID:

17565948

20. Smolikov S, Schild-Prufert K, Colaiacovo MP. A yeast two-hybrid screen for SYP-3 interactors identifies

SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenor-

habditis elegans meiosis. PLoS Genet. Public Library of Science; 2009; 5: e1000669. https://doi.org/10.

1371/journal.pgen.1000669.t002

21. MacQueen AJ, Colaiácovo MP, McDonald K, Villeneuve AM. Synapsis-dependent and -independent

mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes & Development.

Cold Spring Harbor Lab; 2002; 16: 2428–2442. https://doi.org/10.1101/gad.1011602 PMID: 12231631

22. Colaiácovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, et al. Synapto-

nemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical

for proper completion of recombination. Developmental Cell. 2003; 5: 463–474. https://doi.org/10.1016/

s1534-5807(03)00232-6 PMID: 12967565

23. Nadarajan S, Lambert TJ, Altendorfer E, Gao J, Blower MD, Waters JC, et al. Polo-like kinase-depen-

dent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break forma-

tion through a negative feedback loop. eLife. eLife Sciences Publications Limited; 2017; 6: 265. https://

doi.org/10.7554/eLife.23437 PMID: 28346135

24. Pattabiraman D, Roelens B, Woglar A, Villeneuve AM. Meiotic recombination modulates the structure

and dynamics of the synaptonemal complex during C. elegans meiosis. Bhalla N, editor. PLoS Genet.

2017; 13: e1006670–30. https://doi.org/10.1371/journal.pgen.1006670 PMID: 28339470
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